Introduction

Spatial Aliasing

Line Source Array Element

No Spatial Aliasing

Line Source Array Application

On Spatial-Aliasing-Free Sound Field Reproduction Using Infinite Line Source Arrays

Frank Schulte, Till Rettemberg, Sascha Spers

136th AES Convention, Berlin

Institute of Communications Engineering
University of Rostock

2014-04-09 10:00, Paper Session P1. Special Audio P1.9078
Wavefront Sculpture Technologies (WST)

[Fig 16. Border lines in the plane \(d'f' \)]

\[
\begin{align*}
\text{Individual Fringe} & : \varnothing/3 \\
\text{Individual Fringe} & : \text{Individual Fringe}
\end{align*}
\]

[Fig 9. 1992, 92nd AES Convy]

[Hill, 2001/2003, 11th AES Convy, JuES 51(10)]

T. Thompson, 2003, 11th AES Convy]

[Fiesel, 2009, 12th AES Convy]

\[
\text{Sound Pressure} = \sum_{N} \left(\frac{\nabla \cdot \mathbf{u} \cdot \mathbf{x}}{2} \right) \mathbf{x} \mathbf{u} \cdot \mathbf{x}
\]
\[x \mathbf{p}_{x \gamma y} f + \Theta (\mathbf{m} \cdot \mathbf{z}, 0 \cdot \mathbf{x}) \mathbf{d} \int_{\infty}^{0} = (\mathbf{m} \cdot \mathbf{z}, 0 \cdot \mathbf{x}) \mathbf{d} \]

Using the one-dimensional spatial Fourier transform along \(\gamma x \):

\[(\mathbf{m} \cdot \mathbf{z}, 0 \cdot \mathbf{x}) \mathbf{d} \int_{0}^{\infty} = (\mathbf{m} \cdot \mathbf{z}, 0 \cdot \mathbf{x}) \mathbf{d} \]

This corresponds to a multiplication in the \(\gamma x \)-domain:

\[(\mathbf{m} \cdot 0 \cdot \mathbf{x}) \mathbf{d} \int_{0}^{\infty} = (\mathbf{m} \cdot \mathbf{x}) \mathbf{d} \]

Interpretation as a spatial convolution along \(\gamma x \):

\[\mathbf{d} \int_{0}^{\infty} = (\mathbf{m} \cdot \mathbf{x}) \mathbf{d} \]

Continuous problem formulation with monopoles:

\[(\mathbf{x}) \mathbf{d} \leftrightarrow (\mathbf{x}) \mathbf{d} \]

Signal Processing Model for Sound Field Synthesis

Problem Formulation

Cylindrical wavefront into \(z \)

Aim: Spatial aliasing free,

Loospeaker

Loudspeaker

Driving function

Sampled pressure

Sound pressure

\[\mathbf{d} \int_{0}^{\infty} = (\mathbf{m} \cdot \mathbf{x}) \mathbf{d} \]

\[\left\lfloor \mathbf{u} \cdot 0 \cdot \mathbf{x} \cdot \mathbf{x} \right\rfloor \mathbf{d} \int_{0}^{\infty} = (\mathbf{m} \cdot \mathbf{u} \cdot \mathbf{x}) \mathbf{d} \]

\[\left\lfloor \mathbf{u} \cdot 0 \cdot \mathbf{x} \cdot \mathbf{x} \right\rfloor \mathbf{d} \int_{0}^{\infty} = (\mathbf{m} \cdot \mathbf{u} \cdot \mathbf{x}) \mathbf{d} \]
Ideal spectral sampling

Baseline Sampling for Spectral Signals

\[x' = \frac{x}{2} \gamma \nabla \rightarrow (x)_D \]

\[(0, 0, 0, 0) \quad (0, 0, 0, 0) \]

\[\theta = \sin \left(\frac{\varphi}{2} \right) = x' \gamma \nabla \text{ for a 2D wave propagation problem} \]

\[(\mathbf{m}, \mathbf{r}, 0, 0, 0, 0, 0, 0) \cdot (\mathbf{m}, \mathbf{r}, 0, 0, 0, 0, 0, 0) = (\mathbf{m}, \mathbf{r}, 0, 0, 0, 0, 0, 0) \]

Signal Processing Model for Sound Field Synthesis

\[0 = x' \gamma \nabla \text{ we want } \]

\[\frac{x'}{2} \gamma \nabla + x' \gamma = \left(\frac{\varphi}{\varphi} \right) \]

\[\begin{array}{c}
\text{Dispersion relation for a 2D wave propagation problem} \\
\end{array} \]

\[(\mathbf{m}, \mathbf{r}, 0, 0, 0, 0, 0, 0) \cdot (\mathbf{m}, \mathbf{r}, 0, 0, 0, 0, 0, 0) = (\mathbf{m}, \mathbf{r}, 0, 0, 0, 0, 0, 0) \]
Spatial Aliasing due to Missing Spatial Pseudilloidal

Baseband Sampling for Spatial Signals

\[\frac{x \nabla}{\pi} = x \gamma^2 \]
\[(z', 0, x'y), D = (z, 0, x'y)D \]

Ideal sampling:

\[\frac{\theta \sin \frac{\varphi}{3}}{\left(\frac{\theta \sin \frac{\varphi}{3}}{3} \right) \sin} = (x'y)^{\text{circ}}H \]

\[\frac{\theta \sin \frac{\varphi}{3}}{\left(\frac{\theta \sin \frac{\varphi}{3}}{3} \right) \sin} = (x'y)^{\text{circ}}H \]

The position with length \(L \) is circular position with radius \(r \).

Faulty directivities have spectral lowpass characteristics.

Field model \(H(0, x') \) with the faulty directivities of a loudspeaker.

Use the loudspeaker as the spatial posittler.

Causal band sampling for spatial signals.
Line Array Prediction vs. Signal Model

Waveguide as a Spatial Lowpass Filter
\[
\frac{2^\frac{1}{3} \theta \sin \frac{2}{3} \theta}{(\frac{2}{3} \theta \sin \frac{2}{3} \theta)^\frac{1}{3}} = (x^\gamma)^{\text{re_gen}}_H
\]

\[
\frac{2^\frac{1}{3} \theta \sin \frac{2}{3} \theta}{(\frac{2}{3} \theta \sin \frac{2}{3} \theta)^\frac{1}{3}}z_0 = (x^\gamma)^{\text{ch_gen}}_H
\]

\[
\text{Line Pision (Waveguide): } \xi = x \nabla = I
\]

\[
\text{Circular Pision: } \xi = x \nabla = p
\]

Circular vs. Line Piston Model

Suitable for mid frequencies > 1.5 kHz

\[
\xi = x \nabla = p
\]

Suitable for lowest frequencies > 500 Hz

\[
\xi = x \nabla = p
\]
\[\theta \sin \left(\frac{c}{f \mu} \right) = x \]

Waveguide Measurement: Isobars

\[L = 36 \text{cm} \]

Waveguide measurement

Ideal waveguide model
Conclusion

 perfection of the talk available at http://spatialaudio.net/

perfection of the talk available at http://spatialaudio.net/

perfect spatial lowpass filter

waveguides should match ideal line position as best as possible

no gaps between waveguides

Spatial-aliasing-free sound field with a quasi-continuous line source array

Loudspeakers act as spatial lowpass filters

WST criteria 8: all preserved with sound field synthesis and spatial sampling theory