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Abstract—Concert sound reinforcement systems aim at the
reproduction of homogeneous sound fields over extended audi-
ences for the whole audio bandwidth. For the last two decades
this has been mostly approached by using so called line source
arrays for which Wavefront Sculpture Technology (WST) was
introduced in the literature. This paper utilizes a signal processing
model developed for sound field synthesis in order to analyze
and expand WST criteria for straight arrays. Starting with the
driving function for an infinite and continuous linear array,
spatial truncation and discretization are subsequently taken into
account. The role of the involved loudspeakers as a spatial lowpass
filter is stressed, which can reduce undesired spatial aliasing
contributions. The paper aims to give a better insight on how
to interpret the synthesized sound fields.

1. INTRODUCTION

In [1] we introduced a framework from sound field synthe-
sis (SFS) and spatial sampling theory to revisit infinite Line
Source Arrays (LSA) using Wavefront Sculpture Technology'
(WST) [2], [3]. The SES theory has been extensively used
in the context of Wave Field Synthesis (WFS) research [4]-
[14] and is strongly linked to aperture theory in Fourier
acoustics/optics [15]-[17] and antenna design [18]-[20].

So called 2.5-dimensional SFS [6, Ch. 3] aims at the
synthesis of a virtual source within a horizontal listening
plane by a horizontally located loudspeaker array, often termed
secondary source distribution (SSD). The listening area and
loudspeaker array are typically of about the same size, as for
many practically built WFS setups. In [21] it was discussed
that synthesizing a virtual source is only possible within the
so called Fresnel region [20, Ch. 2.2.4] of the SSD.

Sound reinforcement using LSAs has been traditionally
seen as radiation synthesis using electronic and/or geomet-
ric beamforming and -steering methods. Vertical loudspeaker
arrays are commonly used in a linear, curved, spiral, arc or
J-shaped arrangement [22]. In contrast to typical SFS setups,
the listening area is usually much larger than the employed
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loudspeaker arrays. An optimum radiation has to be found that
ensures a smooth frequency response over the whole audience
area and frequency independent, homogeneous amplitude loss
per distance doubling. Additional constraints such as quiet
zones may also be imposed. It is well known that beam shaping
is only possible for a wave length that is much smaller than
the length of the LSA.

Although SFS and radiation synthesis aim at different sound
fields at different target areas, the same analytical treatment can
be performed. Therefore recent results of SFS research may
be applied to LSA applications, which constitutes the main
motivation for the presented work. In [23], [6, Ch. 5] WFS
reproduction of a virtual spherical monopole was analyzed
with the acoustic signal processing framework. The present
work is strongly related to that and the introduced methods
will be applied to our problem of interest in what follows.

In [1] we argued that sound reinforcement with linear LSAs
using the 1% and 224 WST criterion [2], [3] can be modeled as
a special case of SFS: the synthesis of a cylindrical wave per-
pendicular to the array that is uniformly driven. The problem
formulation starts with a linear, continuous and infinite SSD.
Spatial discretization is subsequently modeled by spatially
sampling the driving function. The individual sources can
be represented by baffled piston models. Assuming identical
characteristics for each secondary source, the sampling process
can be formulated in the corresponding spatio-temporal Fourier
spectrum domain, where spectral repetitions are introduced.
We conclude that the loudspeaker directivity acts as a spatial
lowpass filter, i.e. the reconstruction filter within the sampling
model. Ideally, the spatial lowpass has to suppress the spectral
repetitions of the sampled driving function for perfect recon-
struction of the sound field. If the suppression is imperfect the
Green’s function’s spatio-temporal spectrum (i.e. the spatially
not bandlimited spectrum of a spherical monopole) is triggered
by the spectral repetitions and undesired waves corrupt the
intended sound field. This is known as reconstruction error or
post-aliasing. In [9, Ch. 3.3,3.4] different loudspeakers and
thereby postfilters were discussed in the context of WEFS.
We further have shown that a spatial-aliasing-free sound field
for the discussed special case can only be realized either
by choosing the sampling distance smaller then the radiated
wave length A, cf. [1, (23)], or by using line pistons with



the same length as the sampling interval, cf. [1, (38,39)]. For
all other cases spatial aliasing will occur by either employing
circular or line pistons. The tolerated amount of spatial aliasing
energy and hence the quality of the produced sound field is
a critical design criterion of LSAs. In [2], [3] the usage of
waveguides for high audio frequencies was motivated and the
1%t WST criterion defines an active radiation factor (ARF)
as the quotient of piston length and sampling distance. For
ARF > (.82, spatial aliasing contributions are at least 13.5 dB
lower than that of the desired wave. This criterion was initially
derived for finite length LSAs modeled with line pistons.

In this paper we will extend the signal processing framework
towards finite length, linear LSAs. The finite array is modeled
by spatially windowing the driving function. The advantage
of the proposed viewpoint is the strict separation of spatial
truncation, spatial sampling and pre-/postfiltering that might
lead to better insights of the phenomena, cf. [6], [23]. In Sec.
III we summarize the outcome of [1], the model for an infinite,
discrete SSD. Sec. IV introduces the finite length, continuous
line array. In Sec. V both models are combined, discussing
finite length arrays modeled with discrete sources. Finally, a
discussion on simple electronic beamsteering (phased array
[18]) follows in Sec. VI.

II. NOMENCLATURE

This section defines conventions and notations that are used
throughout this study. Linear acoustics with constant speed of
sound ¢ = 343 m/s in a dissipationless medium and free-field
conditions are assumed. A position vector in space

T cosp sind
X = (y) = ||x]| - (sinap Sinﬁ) €))
z cosv

is defined with azimuth ¢ € [0,2 ), colatitude ¥ € [0, 7] and
the vector norm ||x|| = » = /22 + y? + 22. The wave number

vector is given by
k, w cosp sind
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with # = /(k, k), denoting the scalar product with (-, -). The
dispersion relation of linear acoustics

w\?2 . .
(Z) = B2 4+ k2 4 k2 3)
holds. The scalar product (k,x) =k, + ky y + k. z is used
for the description of plane waves in cartesian coordinates.

The temporal angular frequency w = 27 f in rad/s is linked
to the temporal frequency f in Hz. The imaginary number is
denoted by j (j2 = —1). The temporal Fourier transform sign
and normalization convention
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is used for the relationship of the sound pressure p(x,1) in

Fig. 1: Side view of the discussed, schematic SSD setup with
length L using line pistons of length [ or circular pistons of
diameter 2 7, respectively on the y-axis. The distance between
the centers of two adjacent pistons is indicated as the spatial
discretization step Ay. Sound reinforcement is considered
within the zy-plane for x = (z > 0,9,z = 0)T. The wave
propagation angle is indicated with .

time domain and its temporal spectrum P(x,w). The spatial
Fourier transform sign and normalization convention

—+ >0
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P(x,y,z,w):ﬁ/P(x,ky,z,w)e”k“ydky, (6)
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is used. A spectrum with respect to time and space P(k,,w)
is termed spatio-temporal spectrum and due to its nature of a
plane wave decomposition using the spatial Fourier transform,
the term angular spectrum is used in the remainder. The con-
ventions imply that the wave vector k denotes the propagation
direction of the wave. Thus,

p(x, t) =R {e —j (kpw,x) e +j wpw t} (8)

describes a unit amplitude monochromatic plane wave that
propagates into direction of kpw = (kg pw, kypw, k:}p\v)T
and oscillates with wpw. The real part convention ¥{-} is used.

For the chosen conventions the three-dimensional, freefield
Green’s function is defined by

0 =i % llx=xol

G(|lx = %ol w) = ©

47||x — %ol
with the source position xg [24, Ch. 27]. It models an ideal,
radiating (outgoing) spherical monopole [25, Ch. 5.16].

The chosen geometry for the radiation synthesis problem
under discussion using a finite length, linear LSA is depicted
in Fig. 1. The finite length LSA with spatial discretization
Ay is located on the y-axis and is modeled by line pistons of
length [ or circular pistons of radius rg. We are only interested
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(a) Postfilter |Hcire (ky,w)| in dB according to (13) for a circular
piston with diameter 2rg = 3”.
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(b) Postfilter | Hreer(ky. w)| in dB according to (14) for a line piston
with length [ = 37.

Fig. 2: Angular spectra of a baffled circular and a baffled line piston.

in the sound field within the xy-plane, i.e. z = 0, 2 > 0 and
thus consequently restrict the desired ’plane’ wave radiation
synthesis only to this plane, i.e. k, = 0. Hence, for dpw = 7/2
this yields an axial and radial wave number

w
2 o PW
ky,PW - ( c

It can be shown that this 2.5D SFS-approach does not repro-
duce a desired plane wave using a linear SSD. The sound field
rather exhibits an amplitude decay proportional to 1/+/x in the
farfield which is typical for a cylindrical wave amplitude decay
[14, (3.38)], [11, (20)].

The main part of this paper treats the special case of
wave propagation perpendicular to the SSD into direction of
positive x. This corresponds to a radiation angle ppw = 0°
or k, = Orad/m and k, = <, respectively. For this case, we
recall the required driving function’s angular spectrum for the
continuous, infinite SSD [1, (16)]

D(k,,w) =27md(k,) - 276w — wpw)

sin pw)> k‘fﬁpw = (w% cos ppw)?. (10)

an

and the equidistantly sampled driving function’s angular spec-
trum with Ak, = 27/Ay [1, 2D)]

27 X 2
Ds(ky,w) = (AZ Z o(ky — NAZ)) 27§ (w — wpw).
p=—00

(12)

We use the farfield directivities of rigid baffled pistons that
are located within the yz-plane. These can be interpreted as
postfilters Hpost(k,,w), acting on the sampled dr1V1ng function.
For a circular piston with radius 79 (r3 = y3 + 23) that is
uniformly driven, the postfilter is given as [24, (26.42)], [25,
(7.4.17)], [1, (32)]

2 J1 (]fy T‘()) _
ky 1o “ sinpr

2J1(% singprg)

HCirc(kyaw) = s (]3)

where Ji(-) denotes the cylindrical Bessel function of 1* kind
of 1% order [26, (10.2.2)]. Note that for negative ky [26,
(10.11.1)] is valid. The uniformly driven line piston of length [
along the y-axis and infinitesimal width, centered at the origin

is characterized by the unit amplitude normalized postfilter [24,
(26.44)], 125, (7.3.3)], [1, (33)]

sin (ky é) sin (% sin ¢ %) ‘ (14)

HRect(kyaw) = 1 = . ]
ky 5 sin 5
In Fig. 2 the angular spectra | Hpog (ky,w)| of a 3” circular and
line piston are exemplarily given.
In the half plane of interest with x > 0 and z = 0 the
angular spectrum of the Green’s function G(||x — 0||,w), i.e.

the spherical monopole in the origin, is given as [11, (52)]

Go(z, ky,w) = —?1 Jip sl (%)2 —k2.z)  (15)
for propagating waves, ie. |k,| < <. Héz)(~) denotes the
0™ order cylindrical Hankel function of 27 kind [26, §10.1].
Throughout the calculus, evanescent waves are not considered
since the postfilter models hold only under farfield assump-
tions. As a formal consequence, we define Hpoy(ky,w) = 0
for |k,| > ¢ and likewise Go(z, ky,w). Similarly, the inverse
spatial Fourier transform of the propagating contributions of
the spatio-temporal spectrum P(x, ky,w) is given by

‘Flgj\<ﬂ{P(m7ky7W ::7/P.’IZ ]{j w e Jkyydk

(16)

Note that the uniformly driven circular piston model is only
valid for A > ry for real loudspeakers, yielding a upper
boundary frequency. Furthermore the assumption of an infinite
baffle is violated in practice for circular/line pistons and the
whole LSA, and the diffraction holds only for wavelengths
that are large compared to the source dimension. This yields
an lower boundary frequency. The modeling is consequently
only valid within the frequency bandwidth determined by these
limits. However, for the interested specific bandwidths (indi-
vidual pistons, whole LSA) our modeling with the Rayleigh-
Sommerfeld diffraction integral [27, Ch. 6.4] using uniformly
driven pistons and spatially truncated LSAs is nonetheless
useful and allows direct comparison with [2], [3].
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Fig. 3: The single layer potential for a linear, spatially discretized and truncated SSD. Representation in temporal (top) and
spatio-temporal spectrum domain (bottom), cf. [6, Fig. 5.7], [6, Fig. 5.13]. Convolution is denoted by ®, multiplication by O,

III. INFINITE, DISCRETIZED LSA

This section summarizes the outcome of [1] together with
the analytical treatment of [11, Sec. IV.B]. The angular spec-
trum of the synthesized sound field using an infinite, dis-
cretized, uniformly driven, linear array modeled with pistons
(13),(14) is with (12),(15) given as [1, (24)]

sampling & reconstruction
P(z,ky,w) = Ds(ky,w) - Hpost(ky,w) - Go(x, ky,w) (17)

loudspeaker as spatial lowpass

for the considered zy-half-plane. A constant postfilter
Hpoy(ky,w) = 1 corresponds to reproduction with spherical
monopoles and the sound field is analytically given as [11,

(371

1
P(z,y,w) = Ay 27 0(w — wpw) X

io Gola by = p 27 ) e in ki (18)
= y vy Ay7 )

by inverse spatial Fourier transform and subsequent simplifica-
tion. For |u Ak,| < % only propagating waves are taken into
account, which reduces the sum in (18) to finite extent. The
exponential term in (18) describes the component along the
y-dimension. Note the discrete set of possible wave numbers
due to the discrete driving function’s angular spectrum. The
Green’s function’s angular spectrum describes the component
into radial direction. Both components together describe a
cylindrical wave with radiation angle ¢,. For ; = 0 the
intended cylindrical wave perpendicular to the SSD (i.e. into z-
direction) is generated. For all other y that fulfill | Ak, | < <
propagating cylindrical waves are synthesized that manifest as
spatial aliasing, cf. [1, Fig. 2(c,d)]. For Ay < A the Green’s
function generates a propagating wave only for ¢ = 0 and
thus no spatial aliasing occurs. By introducing the postfilter of

pistons, the sound field is given as

1
Pz, y,w) = — 27 0(w — wpw) X

Ay
+00
21 27
N;OO HPost(ky = Mfyﬂ/’u) . G0($7ky = Mry’w)x
I~ (19)

The postfilter attenuates the spatial aliasing contributions, cf.
[1, Fig. 5]. Perfect reconstruction for all temporal frequencies,
i.e. a spatial-aliasing-free sound field is achieved with line
pistons for [ = Ay, as discussed in [1, Sec. 5.2].

IV. FINITE LENGTH, CONTINUOUS LSA

To account for a finite length array, the signal processing
model is extended by windowing the driving function, cf.
Fig. 3. This section discusses a finite, albeit continuous SSD:
the sampling stage is omitted and the driving function is
truncated to

by employing the rectangular window (as in [2])
1 for |yl < %
= 21

with the angular spectrum (normalized to unity)

sin (ky %)

w(ky) = L (22)
Y 2
The convolution of (22) and (11)
1
Dy(ky,w) = 2 w(ky) *g, D(ky,w) (23)
leads to
sin (k, £
Dy (ky,w) = (ky 5) (24)
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for which 27 §(w — wpw) dependence is omitted here and in
the remainder. Similar to (17) the angular spectrum of the
synthesized sound field is given by

P(z, ky,w) = Dy(ky,w) - Go(z, ky,w). (25)

The Dirac function (11) is smeared by convolution (23) and the
driving function’s angular spectrum (24) becomes continuous
regarding k,, cf. [11, Sec. VII]. Hence, the treatment and the
interpretation of the synthesized sound fields and the radiation
characteristics of the LSA becomes more demanding.

A. Farfield Directivity & Fresnel/Fraunhofer Transition
The single layer potential [1, (2)], [11, (9)]

+o0
Pexw) = [

—0oC

0% Ix—xol

S | 26
A7 |x — xof ° (26)

w(yo) D(yo,w)

formulates the problem of (25) in the temporal spectrum
domain. Closed form solutions for finite length arrays are only
available for special cases.

Evaluating (26) for ||x|| > L, [|x]| > A H—EH > %, the
farfield polar pattern can be analytically derived [28, Ch. 3.5],
and the direct link to the angular spectrum

+L/2
P(x,w) o Do (hyyw) = / D(yo.w)e™Frm dy,  27)

—L/2

is well known. D, (k,, w) is therefore interpreted as the farfield
directivity of the LSA, cf. [24, Ch. 26.2], [25, Ch. 7.11], [28,
Ch. 3.6].

Another closed form solution of (26) can be derived for
positions x = [z,0,0]7, 2 > L/2, i.e. along the main axis,
cf. [24, Ch. 26.23], [29], [2, 1.3.b]. The latter two papers
deduced, that a continuous, finite length array with constant
volume acceleration exhibits a Fresnel region (3 dB amplitude
loss per distance doubling with ripples, 3 dB/oct. lowpass for
temporal frequencies with ripples) and a Fraunhofer region (6
dB amplitude loss per distance doubling, temporal frequency
independent amplitude), cf. Fig. 4 and [2], [29]. The transition
or border distance xg between both regions on the main axis
is highly dependent on the frequency f and array length L.
By the geometric diffraction approach, the authors of [2], [3,
p. 913] derived

wB:Ein P , (28)
27 ¢ ({L)z

for which zp ¢ R indicates pure Fraunhofer radiation. We
therefore cannot expect cylindrical wave radiation for all
frequencies, contrasting to the case for the infinite line source
[29, p.12], [1].

In the following section we utilize the signal processing
framework within angular spectrum domain to derive another,
yet consistent viewpoint of Fresnel/Fraunhofer transition.

—3dB 0dB _34dB
Fraunhofer

F 1S Fraunhofer
reme\.T@]g\G dB % Tresnel

SPL SPL
T—> log, T—» log, f

Fig. 4: Simplified radiation characteristics on z-axis for a
rectangular windowed, continuous LSA under constant volume
acceleration.

B. Angular Spectrum Synthesis

The inverse spatial Fourier transform of (25) for the prop-
agating part of the sound field is given by

P(J’.ay7w) - ‘F";j‘g%{Dw(kva) : GO(J’.’ kyaw)}

e
1 .
=5 Dy, (ky,w) - Go(2, ky,w) -e RV dk,.  (29)
iy

w
c

The analytical solution of the integral is—if feasible at all-
not straightforward and we leave this for future inspection. In
[30] an analytical treatment for the on-axis pressure spectra of
a circular and rectangular piston is given very similar to the
proposed approach. Numerical evaluation allows for synthe-
sizing the sound field by weighted superposition of cylindrical
waves with propagating angles —7/2 < ¢ < +m /2, which can
be interpreted as angular spectrum synthesis, also referred to as
’method of decomposition into wavelengths’ [28, Ch. 13.5.4].
Note that these waves stem from an infinite, continuous line
source. The integration over k,, i.e. the different radiation
angles, yields the radiation characteristics of a line source with
finite dimension by interference phenomena. This viewpoint
is in contrast to the numerical evaluation of (26), which
can be interpreted as source synthesis by weighted spherical
monopoles. Note that (26) inherently includes evanescent
waves, which we discarded in (29) for ease of discussion. The
discretization of &, in (29) for numerical evaluation leads to
spatial repetitions of the sound field along the y-axis, which
must become negligible in the evaluated listener area.
Writing out (29) yields

For less computational load the large argument approximation
of the Hankel function may be utilized

e

—j sin L
Pl = 52 [ (k, 5) 2

Yy
87 ky% Ty /(9)2 — k2w

— (V(£)2—k2a—7%) P kyy]dky 31




for /()2 —kZ-z> 1.
The proposed framework provides an interesting opportu-

nity, by definition of a perfect spatial lowpass filter (cf. [14,
(4.55)]. [12, 9D

L |ky| < |3

3
0 elsewhere, (32)

HLp(ky,ch) = {
that may be included to the signal flow. This was discussed
in [14, Ch. 4.6.6], [12], although with the different motivation
to suppress discretization effects (spatial aliasing) instead of
truncation artifacts as in the case presented here. The cutoff
wave numbers k, = +27 /L are the locations of the first zeros
of the array’s farfield directivity (24), if they exist in the visible
region |k, = 27 /L| < ¢ for the chosen frequency. The
spatial lowpass can be used to independently synthesize the
sound field of the main lobe

Prain(7,y,w) =
Firogj<e {Hip(ky,w) - Du(ky, w) - Go(z. ky. )} (33)

c

and that of the remaining propagating side lobes

Pside(xr va) =
\7'-‘25|§%{(1*HLP(1‘~'317W)) + Dy (ky,w) - Go(, ky,w) } .

(34
This is equivalent to splitting the integral (30) into three
integration ranges

N
P(z.y,w) = e+ -+ / (35)
-2z G +34

——
anm(I,y,w) Pside(weyyw)

C. Numerical Evaluation

In Fig. 5 the introduced approach is evaluated for the case
L = 8-\ =5.05m. Fig. 5a shows the sound fields’ pressure
level of the uniformly driven LSA in the zy-plane according
to (30), (35). The sound pressure level (SPL) is normalized
to 94 dB at x = 20 m on the main axis. The colormap
is clipped for values > 112dBgp;, and < 67dBgpL. The
Fresnel/Fraunhofer transition distance (28) for this example
is given to zg = 20.04m. Fig. 5b shows the sound fields’
pressure level that stems only from the main lobe (33), whereas
Fig. 5c excludes it, i.e. the synthesis of all remaining side
lobes (34). The superposition of Puyain(,y,w) Fig. 5b and
Pyge(x,y,w) Fig. 5¢ results in the sound field P(z,y,w)
Fig. 5a by interference. In Fig. 6 the SPL on the main axis was
evaluated for all three cases. The main lobe sound field exhibits
a ripple free amplitude decay with a transition at xg from
almost ideal cylindrical (Fresnel) to spherical (Fraunhofer)
amplitude decay. The sound field that excludes the main lobe
exhibits lower overall SPL, notches and an amplitude loss,
that is larger than 6 dB per distance doubling for > xp.
The interaction of the main and side lobes for z < xp results
in the rippled on-axis sound pressure level that is typical for
the Fresnel region [2], [22], [29]. The total sound field in the
zy-plane is corrupted by the side lobes as long as the level of
the latter is large enough to produce perturbing interferences.

y/m

(1| O S S S 98

0 5 10 15 20 25 30 35 40 SPL
x/m

(a) Complete sound field |P(z,y,w)| = |Pmain(z,y,w) +

Piige(z,y,w)| according to (30),(35)
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X /m

(b) | Prain(z,y,w)| (33) of main lobe components.
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10

-15
-20
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(©) |Psige (x, y,w)| (34) of side lobe components.

Fig. 5: Level of sound field | P(z, y,w)| synthesized by numer-
ical evaluation of (35) with a continuous, finite length array
(L=5.05m, f =8-¢/L =543.4Hz).

The side lobe level attenuation for x > zp is larger than 20
dB, and thus has weak impact on the total sound field, which
is expected in the Fraunhofer region.

By observing the temporal frequency and LSA length de-
pendence regarding the integration limits in (33) for the main
lobe sound field

27

LW
\k:y:suup;\zf, (36)
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Fig. 6: On-axis sound pressure level for Fig. 5.

it becomes obvious that for higher frequencies and/or larger
LSAs, the side lobe field is synthesized from smaller radiation
angles ¢. These waves closer to ¢ = 0° interfere with the main
lobe within a much larger spatial region, and this is indicating
the large Fresnel/Fraunhofer transition borders in (28) for high
frequencies and large array lengths.

V. FINITE LENGTH, DISCRETIZED LSA

We proceed with the discussion of a finite length, discrete
LSA modeled with pistons. Therefore we employ the complete
signal processing chain in Fig. 3 except the prefilter Hpy. As
depicted in Fig. 1, an axisymmetric LSA geometry with regard
to ¥ = 0 and an odd number N of sources is assumed.

The driving function for a finite length, uniformly driven
and discretized array of spherical monopoles is modeled as

Dus(y,w Z 3y — pAy). (37)

2

This includes spatial truncation (20) by a rectangular window
(21) and discretization with step size Ay (12). The correspond-
ing angular spectrum is given as

+N2—1
Dy s(ky. w) = Z

p=—"3

eTilky Ay)p (38)

This geometric series has the closed form solution of the
Dirichlet kernel, also called aliased sinc-function [31, (3-37)
ff., App. B], given by

1 sin(ky, Ay N/2)
N sin(k, Ay/2) '
using unit amplitude normalization for ease of discussion, cf.

[18, Ch. 24], [20, Ch. 6.3]. D, s(k,) in (39) is formally
defined for all k, € R and is periodic w1th 27 /Ay. For

2

y — M Ay

unit amplitude peaks occur due to the spectral repetitions of
the Dirac comb in (12). The Dirac comb (12) is smeared to

sinc-like lobes due to windowing. The main lobe for ;=0 is
located between k, = 27 /L as in Sec. 1V, the lobes with

Dus(ky,w) = (39)

= p Ak, (40)

1 I
N=15
075+ “ N=31
;:-\ 0.5¢
(%]
o® 025
0
-0.25 : : : : :
-30 -20 -10 0 10 20 30
k / (rad/m)
Fig. 7: Dy s(ky) in (39) for Ay = 27/20m, Ak, = 20 rad/m,

N =15 (gray) N = 31 (black).

peaks at k, = pu Ak, for ;1 # 0 are termed grating lobes [18],
[20], whereas all remaining side lobes exhibit a sinc-like decay,
cf. [2, p.15]. Thus, a higher number of sources N and thereby a
longer LSA exhibits a narrower main lobe and narrower grating
lobes, cf. Fig. 7. A smaller discretization step Ay results in a
larger distance Ak, between adjacent main/grating lobes. The
propagating region of the Green’s function’s angular spectrum
is triggered by (39) with the temporal frequency dependent
‘visible region” —% < k, < +%, cf. [18, Ch. 2.3].

In [2, I1.2.a] (39) was termed form factor of the array,
whereas in [22] the term directivity function was used. The
angular spectrum (39) is interpreted as the farfield directivity
of a finite length line array build with equidistantly spaced
spherical monopoles.

According to the signal processing model, when using
pistons instead of spherical monopoles, we can define the
driving function’s angular spectrum

w.S(kyaw) post(k ;W) (41

as the farfield directivity of the LSA, which is consistent
with the product theorem [15, Ch. 7], [25, Ch. 7.9], that is
also referred to as pattern multiplication [18, Ch. 2.8]. In [2,
p-13], [2, Fig. 16] the farfield of a discrete, finite length array
was termed collective Fraunhofer region. In antenna design
the product (41) was termed final array factor for a closely
related problem treatment [32]. In fact, the product theorem
was utilized in [2, Sec. II. 5.], [3, Sec. 3.2] to derive the 1%
WST criterion that is discussed in the next subsection. Due to
the nature of its derivation it holds only for line pistons.

For a line piston LSA with Ay = and L = N -1, we arrive
at the very special case of perfect spatial aliasing suppression

Dw(ky: W) = Dugs(kyaw) : HRect(kya w) 42)

using (39) and (14) to equate with (24). This yields the farfield
directivity (24) of a continuous, finite length array. However,
note that (42) is only valid for a uniformly driven array.

At this stage of discussion it is worth to stress that manipula-
tion of Dy, s u(ky,w) (41) in the electronic signal domain is not
possible. The postfilter acts in the acoustic domain and once
the driving function is physically sampled by using discrete
loudspeakers there is no further control over Dy, su(ky,w) in
the electronic domain.

Dy su(ky,w) =



A. First and Second WST Criterion

The previous introduction of the driving function for a finite
length, discretized array and the product theorem allows for
revision of the 1% and 2" WST criteria. The revision of the
other three WST criteria [3, p.929] is beyond the scope of this
paper.

According to the sampling theorem for baseband signals,
perfect reconstruction of (39) requires an ideal spatial lowpass
with Nyquist bandwidth
Lkl < 59 = 4
0 elsewhere

HLp(]{T:U,W) = { (43)

as the postfilter. The finite length line array build with
equidistantly spaced spherical monopoles does not involve
this filter physically. This models practical LSA designs us-
ing approximately omni-directional radiating loudspeakers at
low frequencies. Note that this ideal spatial lowpass transfer
function yields an infinite sinc-shaped spatial impulse response
response Hyp(yo,w), which consequently models a piston of
infinite length. The concept of the so called anti-aliasing
loudspeaker presented in [12] is obviously not feasible. Perfect
reconstruction is thus only possible for frequencies that fulfill
w Ak,

Iyl =2 < S,

Rearranging (44) reveals the 2" WST criterion [2], [3, p.918]-
which in fact constitutes the sampling theorem for spatial
baseband signals [18, Ch. 2.4.1.2]-

(44)

c A

WST #2: f< 5 Ay & Ay < 5" 45)
that defines a spherical monopole spacing not larger than half
of the radiated wave length in order to synthesize a spatial-
aliasing-free sound field, i.e. no spectral repetitions enter the
visible region. Eq. (45) requires very small distances Ay
and thus small pistons/drivers for high frequencies, which is
a technically demanding approach. However, choosing very
small drivers and a source spacing in the range of about 1”
for the high frequency LSA section—and thereby fulfilling the
sampling theorem (44) for a very large temporal frequency
bandwidth—is a recently realized approach in commercial
LSA designs, such as the EAW AnyaTM and Martin Audio
OmniLine® systems. At the time at which WST was initially
invented, this was not yet considered feasible.

Thus the 1% WST criterion was additionally defined for the
case that (39) is allowed to exceed the Nyquist band width for
high temporal frequencies. With regard to the signal processing
model in Fig. 3, a postfilter Hg.. was introduced by the authors
of [2], cf. [3, Fig. 6]. By allowing grating lobes in the region
of [ky| < ¢ in (39), spatial aliasing is tolerated. The postfilter
is expected to attenuate grating lobes. This is in contrast to
complete avoidance by fulfillment of the 2°¢ WST criterion.
For large NV the Active Radiation Factor (ARF) [3, Ch. 3.2]

WST #1: ARF = L >0.82 (46)

Ay
was defined, such that the farfield level of all side lobes
(i-e. from windowing) and grating lobes (from sampling) in
(41) is at least 13.5 dB below the main lobe level. This was
motivated with amplitude matching of the highest side lobe of

a continuous, rectangular windowed array. We define the ARF
for the practical setup of a finite length LSA with line pistons
to

ARF = AL >0.82 “7

according to the sketched geometry in Fig. 1. Recall that (42)

corresponds to an ARF = 1 design with the chosen parameters.
For the two-dimensional case of adjacent, non-overlapping

circular pistons with radius ro the ARF was derived to [3]

2
m™ry

ARF = — =~ (.7854, (48)
4rg

using a quadratic enclosure with length 2 7. It was concluded
that the 1 WST criterion never can be fulfilled by usage of
circular pistons, which suggests that only the 2" one can be
used for circular pistons. The deduction is misleading, since
the 1% criterion was derived for a line piston postfilter using
the product theorem, cf. [3, Sec. 3.2].

Although — for an infinite array — it was shown that Hcje
cannot perfectly suppress the undesired spectral repetitions for
Ay = 2r [1, Fig. 5] as Hgey does for I = Ay [1, Fig. 7],
Heire has better spatial lowpass characteristics than Hgee with
the same dimension (I = 2 rg), for the case that spatial aliasing
is disregarded, cf. Fig. 2. A comparison of two LSAs with

o 3” circular pistons, ARF = 7/4

o line pistons of length I = 0.0635 m, ARF = 0.82
of same LSA length L ~ 5m using f = 5kHz is conducted.
The line piston LSA fulfills the 15 WST criterion, whereas the
circular piston LSA violates both the 1* WST criterion (due to
insufficient ARF) and the 2™ WST criterion (due to frequency
is above Nyquist frequency). In Fig. 8 the farfield directivities
| Da,s(ky,w) + Hposi(ky,w)| are depicted. The discretization
step size Ay is almost equal for both cases and the same
number of pistons N = 65 is used. Due to equal LSA length,
the main lobes exhibits the same sinc-patterns. Two grating
lobes of (39) exist in the visible region —% < k, < +% and
become attenuated by the postfilters. Fig. 8 indicates the larger
grating lobe suppression at |k, = 27 /Ay| ~ 80rad/m for the
circular piston LSA of about 15 dB, compared to the expected
13.5 dB for the line piston LSA.

Rect |1
Circ [

F-w/c Fala
-13.5dB ]

100 75 50 -25 0 25 50 75 100
ky;’(rad!m)

Fig. 8: |Dy su(ky. w)| for f = 5kHz, L ~ 5m. LSA with
ARFcye = w/4: rg = 37 /2, Ay = 37, N = 65. LSA with
ARFgeey = 0.82: { = 0.0635m, Ay = 0.0777m, N = (5.



B. Numerical Evaluation

The angular spectrum of the synthesized sound field is with
(41) given as, cf. (17)

P(z,ky,w) = Dy su(ky,w) - Golz, ky,w). (49)

The inverse spatial Fourier transform for the range |k, | < <
yields the sound field for propagating waves similar to (29)

P(.’,E,yOJ) = ‘ﬁ;j‘g% {P('T’ ky’w)}
+

— ﬁ . /[Dw,5<ky’w) 'Hposl(kyrw)

—w

c

x Go(w, ky,w)-c V) dk,. (50)

By using (50), a 5m-LSA modeled with line pistons is
numerically evaluated according to the strategy in (35). The
LSA parameters in Fig. 15a are used for f = 1.2kHz. Note
that the evaluation is only valid in the farfield of the line
pistons, i.e. > 17cm according to (28). The sound fields’
pressure levels are visualized in Fig. 9. The farfield directivity
exhibits two grating lobes around £k, = 13.6861rad/m,
o = £38.5°, that have been attenuated by the line piston’s
postfilter, cf. Fig. 15a. The resulting spatial aliasing is observed
in Fig. 9a. In the plotted region of Fig. 9b Pun(z,y,w)
exhibits pure Fresnel characteristics on main axis. This sound
field is corrupted by interference with Pyge(x,y,w) that is
shown in Fig. 9c, resulting in the so called chaotic region
[2, TI.1. & fig. 16] in Fig. 9a close to the array. Note that
this is a deterministic phenomenon due to (50). In [2, p. 14,
72..4.:] the transition distance on main axis between the chaotic
region and the collective Fraunhofer region was derived from
the geometric diffraction approach to

o f 1

1.5
e AV i — 51
B = 5 v 4£ ShH

For » > wp the side lobe level becomes negligible, which
is confirmed by the on-axis sound pressure level depicted in
Fig. 10. For the chosen example zg = 44.5m holds.

It is worth realizing the fundamental difference regarding
the synthesized sound fields of infinite and finite length LSAs.
While for infinite arrays the sound field remains corrupted
over the whole space, the finite length LSA exhibits an almost
spatial-aliasing-free sound field beyond the discussed distance
IB.

1) Circular vs. Line Piston LSA: In the remainder of
Sec. V we discuss further properties and special cases for
uniformly driven, discrete, finite LSAs. The simulation results
are depicted in Fig. 14 to Fig. 16 at the end of this paper.
In those figures one column represents a specific scenario.
Subplot a) depicts the farfield directivity |D,, s u(ky,w)| (41)
over temporal frequency f and wave number k,. Levels
< —36 dB are clipped to white color. Subplot b) shows the
specific farfield directivity for the visible region of a chosen
temporal frequency, for which subsequently in subplot c) the
resulting sound field is numerically evaluated by the single
layer potential using appropriately discretized pistons located
on the y-axis (line pistons) or within the yz-plane (circular
pistons). All sound fields’ levels are normalized to 94 dBgp,
at # = 10m on main-axis. Sound pressure levels > 112 dB

0 - " " " " dB 67

0 5 10 15 20 25 30 35 40 SPL
x/m

(a) Complete sound field |P(z,y,w)] = |Puain(z,y,w) +

Prige(z,y,w)|.

0 5 10 15 20 25 30 35 40 d
X /m

(b) | Pain(,y,w)| of main lobe components.

0 5 10 15 20 25 30 35 40
X /m

(©) |Psige (x, y,w)| of side lobe components.

Fig. 9: Sound field synthesized by numerical evaluation of
(50) with an LSA build by line pistons (L = 4.9684m, f =
1.2kHz, Ay = 0.4591m, | = 0.381m, ARF=0.8436, N =
11).

are clipped to black color, those < 76 dBgpr, to white color.
The frequencies for the synthesized sound fields were chosen
to highlight the particular phenomenon under discussion.

In Fig. 14 LSAs with ARF = 7/4, L ~ 5m modeled with
circular (left) and line (right) pistons of about the same dimen-
sions can be compared. The circular piston LSA — although
violating the 1% and 2™ WST criterion — has better spatial
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Fig. 10: On-axis sound pressure level for Fig. 9.

lowpass characteristics, the two observable grating lobes in
Fig. 14c for 1.6 kHz are attenuated ~ 15 dB in the far field. For
20 < |ky| < 30rad/m side lobe suppression of more than 36
dB is observed. This results in only small sound pressure levels
in the proximity above and below the LSA. Using line pistons
for this LSA on the other hand violates the ARF criterion (46):
we observe four prominent grating lobes in Fig. 14d, postfilter
attenuation of minimum 13.5 dB is not achieved for the first
pair. The outermost grating lobes produce high sound pressure
levels in the depicted sound field near above and below the
LSA.

For the discussed case the circular piston LSA exhibits less
spatial aliasing, as was already discussed in Sec. V-A. The
result here is however only of theoretical interest, since a 15”
circular piston is not able to radiate uniformly at this frequency
in practice and thus the farfield piston model is not valid.

2) LSAs with Different Line Piston Length: The ARF
criterion (46) alone states only a minimum ratio for piston size
and source spacing, which obviously can be met by different
setups. In Fig. 15 two LSAs with ARF ~ 0.84 and L ~ 5m
modeled with line pistons, using N = 11 pistons of length
I = 0.381m (left) and N = 21 with | = 0.2012m (right)
are visualized. The LSAx—11 exhibits four grating lobes for
f = 1.6kHz due to the larger discretization step Ay, concur-
rently with high suppression in the range of k, ~ 20rad/m.
The LSA -2 features only two grating lobes that have about
the same farfield radiation angles as the two outermost grating
lobes of LSAy_11. This is due to Ayy—11 &~ 2Ayy—o1. In
both cases all side and grating lobes are attenuated at least
13.5 dB in the farfield, since the ARF criterion is fulfilled.

Note that the maximum line piston size was defined only in
[3, Sec. 6.2] by linking it with a maximum allowed splaying
angle of adjacent pistons for curved arrays.

3) LSA with Spatial Aliasing at p = £90°: We use the
same LSA setup with NV = 11 line pistons as in the previous
subsection, although at a different frequency. Evaluating at
f 1.495kHz illustrates the phenomenon of propagating
waves along the array axis, depicted in the left column of
Fig. 16. Here the spectral repetitions with p +2 occur
at wave numbers |k,| = 27.37rad/m, close to the pole of
Go(z,ky,w) at £ 27.386rad/m. This results in wave
propagation along the array (|¢| ~ 90°). The level of the
produced sound field close to the array is not predicted by the
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Fig. 11: On-axis and off-axis sound pressure level versus
distance for Fig. 16e.

LSA farfield directivity D, su(ky,w). In Fig. 11 the sound
pressure level along the z- and the y-axis is evaluated. It
indicates that the wave propagation along the array (grating
lobe on y-axis) decays with 6 dB per distance doubling and
therefore faster than the main lobe (on z-axis) that exhibits
a typical Fresnel/Fraunhofer level decay. However, very close
to the array (x,y < 7m) both sound pressure levels exhibit
the same order of magnitude. In the collective Fraunhofer
region (¢/y = 100rad/m, Fig. 11) |Dy su(ky,w)| predicts
the grating lobe suppression of 15 dB, that is observed in
Fig. 16c. Wave propagation along the array with high SPL, that
results from spatial aliasing, occurs for all LSA designs that
violate the 2" WST criterion and ARF < 1. This is observable
at particular frequencies, where the grating lobes trigger the
Green’s function’s angular spectrum very close to its pole. This
behavior cannot be avoided and is observable in commercial
prediction software as well®.

4) Spatial-Aliasing-Free LSA with ARF=1: In Fig. 16,
right column for completeness a continuous LSA is simulated
corresponding to Sec. IV. Due to (42) this models also a
discrete LSA with ARF = 1 using the chosen parameters. No
grating lobes occur and only the sinc-function of the truncation
window (22) is observable, producing the well known sound
field of a continuous, uniformly driven line source, cf. [22,
Fig. 13].

VI. ELECTRONICALLY STEERED, FINITE LENGTH AND
DISCRETIZED LSA

Finally we briefly discuss a simple radiation synthesis
technique, known as phased array [18], to steer the main lobe
into direction ¢ # 0°. By applying a delay time 7 cumulatively
to the individual sources, the main lobe of an LSA can be
steered into direction of wge;. With the wave velocity along
the array, cf. [28, Ch. 3.5.3]

Ay c
sin PSteer

and the corresponding wave number ky sieer = =, the driving
. ~ . . S .
function’s angular spectrum for a straight, discretized, rect-

>c (52)

Cs
T

2e.g. Meyer Sound MAPP Online, 21x M’elodie, uniformly driven, 1/24
oct., 1414.2 Hz



angular windowed and finite length array is given as [25,
(7.8.16)1, [18, Ch. 2.5], [28, Ch. 3.5.3]
_ i sin([ky — ky. steer] Ay N/2)

N sin([ky — ky seer] Ay/2)
The farfield directivities | D, s u(k,,w)| for two electronically
steered (@seer = —H°) LSAs of length L ~ 5m modeled
with line and circular pistons respectively are visualized in
Fig. 12. The line piston LSA in Fig. 12a exhibits an ARF=1.
The circular piston LSA exhibits an ARF = 7 /4, with much
smaller pistons than the line pistons. The line piston postfilter
Hge attenuvates the intended steered main lobe in Fig. 12a
for f > 6kHz due to its first notch of the sinc function (14).
A prominent grating lobe enters the propagating part of the
Green’s function’s angular spectrum at about 800 Hz and can
be traced towards k, ~ Orad/m at 8 kHz. It exhibits about
the same level as the intended main lobe and will severely
corrupt the desired wave propagation. Electronic beamsteering
with large line pistons (large /, small Ak, narrow main lobes
in farfield directivity) is therefore not advisable. This was also
concluded by [33]. Consequently for WST #1-conform LSAs
using large line pistons this requires beamforming by adapting
an appropriate LSA curvature towards the audience area, which
motivated the invention of the 4™ and 5% WST criteria [3,
p.929].

The electronically steered LSA in Fig. 12b is modeled with
adjacent 3” circular pistons. Since the sampling step size
is much smaller, only two grating lobes are observed. The
intended main lobe is maintained within the plotted frequency
range, due to the less directed farfield pattern of the postfilter.
For an LSA modeled with pistons, it is obviously advantageous
to use a larger number N of smaller, individually driven
sources, which exhibit a less directed piston farfield pattern
and thus offer a higher degree of freedom, cf. Fig. 13. The
same deduction [34], [35] presumably was considered for the
R&D of the EAW Anya system. In essence this approach was
also confirmed in the simulations performed in [36]. Note that
for a spatial-aliasing-free control of the visible region up to
16 kHz a sampling distance Ay = % = 1.07cm would
be required, according to the sampling theorem (45). Such an
LSA could be termed "purely WST #2-conform’.

Dw,S(kya UJ)

(53)

VII. CONCLUSION

We revised and provided new insights to the 1% and 2™
Wave Sculpture Technology criteria with a signal process-
ing framework that was developed in sound field synthesis
research. Although analytical treatment is sophisticated and
presumably not possible, the numerical evaluation of—what we
termed—angular spectrum synthesis allows for a more intuitive
interpretation on how sound fields are synthesized from linear,
discrete and finite length arrays that are modeled with farfield
directivities of baffled pistons.

We conclude that spatial-aliasing-free sound fields for high
frequencies should be synthesized with line source arrays that
employ waveguides with an ideal active radiation factor of one.
Based on the discussions it is furthermore suggested to choose
a very fine driving granularity, i.e. a small discretization step
and therefore small, non-directed, individually driven pistons.
This approach would displace the spatial aliasing problem to
higher temporal frequencies and therefore a higher degree of
freedom for spatial aliasing-free control of the visible region is
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(a) Line pistons Hpeet(ky,w). I = 0.4591m. L = 5.05m, N =
11, ARF=1, Ay = 0.4591 m, Ak, = 13.6859 rad/m.
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(b) 3” circular pistons Hcire(ky,w), L = 4.9530m. N = 65,

ARF=r/4, Ay = 0.0762m, Ak, = 82.4565 rad/m.

Fig. 12: Farfield directivities | D,, s u(k,, w)| for off-axis beam-
steering to Qgeer = —H° for two LSA setups.
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Fig. 13: |Go(z, ky, w) - Heire (ky, w)| in dB using (15) and (13).
x=10m,2ry = Ay = 17 = 0.0254 m, Ak, = 247.37rad/m.
The black triangle schematically indicates an intended driving
function’s angular spectrum range Ds(k,,w) for a constant,
temporal frequency independent farfield directivity of 35°
(=30° < ¢ < +5°). Spectral repetitions lead to propagating
spatial aliasing within the triangle parts that are indicated with
red lines.



achieved. This would allow improved performance of finding
driving functions in recently developed numerical optimization
schemes [36]-[43] that aim at electronic beamforming.
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UPDATES

2014-07-30 initial version

2014-09-28 revisited, minor corrections and clarifications, Fig.
13 added, antenna design & array processing didactics
2014-10-06 revisited

2014-10-25 [33]-[35], [38], [42], [43] added and linked to
text, correction below (42): Dy s(k,,w) is controllable elec-
tronically. In fact, Dy s(ky,w) is via Fourier transform re-
lated to the loudspeaker weights of an LSA modeled with
spherical monopoles. Further discussion on that TBD. Only
Dy su(ky.w) is not anymore controllable electronically.
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Fig. 14: Angular spectra and sound fields of a rect windowed line source array, left: with circular pistons (L = 4.953 m, ARF=mn/4,
N = 13), right: with line pistons (L = 4.9401 m, ARF=0.7851, N = 11)
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Fig. 16: Angular spectra and sound fields of a rect windowed line source array, left: with line pistons (L = 4.9684 m, ARF=0.8436,
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