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Abstract—Concert sound reinforcement systems aim at the
reproduction of homogeneous sound fields over extended audi-
ences for the whole audio bandwidth. For the last two decades
this has been mostly approached by using so called line source
arrays due to their superior ability to produce homogeneous
sound fields. Design and setup criteria for line source arrays
were derived as Wavefront Sculpture Technology in literature.
This paper introduces a viewpoint on the problem at hand
by utilizing a signal processing model that was developed for
sound field synthesis. It will be shown that the optimal radiation
of a line source array can be considered as a special case of
spatial-aliasing-free synthesis of a wave front that propagates
perpendicular to the array. For high frequencies the so called
waveguide operates as a spatial lowpass filter and therefore
attenuates energy that otherwise would lead to spatial aliasing
artifacts.

I. INTRODUCTION

Wavefront Sculpture Technology' (WST) and its derived
criteria [1]-[3] represent the modern fundamentals of line
source array (LSA) radiation. Similar findings were also dis-
cussed in [4]. The WST criteria define how to engineer LSA el-
ements (single loudspeaker cabinets) and how to setup an LSA
in order to reproduce homogeneous sound fields over a large
audience area. The WST criteria 1-3 [3, pg. 929] define how
the LSA elements have to be designed arranging an in-phase
driven, straight LSA of finite length. For high frequencies (>1-
2 kHz) the criteria suggest to use line pistons with specific
length and infinitesimal width as individual sources. This will
be achieved by waveguides that are able to “generate a flat,
isophasic” wavefront [3, pg. 916]. This feature constitutes
the main difference to a line array for which regular (horn-
loaded) loudspeakers are vertically stacked. Typically the latter
produce undesired interference patterns — which we will term
spatial aliasing — that corrupt the desired sound field mainly
at high frequencies. LSA designs aim at avoiding this. The

IWavefront Sculpture Technology® is a registered trademark of L-
ACOUSTICS US, LLC. We omit the labeling in the remainder of the paper
and will only use the relevant research results.

WST criterion 4 defines an optimal array curvature to provide
a homogeneous and frequency independent amplitude decay
over the audience distance. The WST criterion 5 interrelates
the length of the waveguide and a maximum possible splaying
angle between the LSA elements.

Model- or data based loudspeaker directivities have been
taken into account for the prediction of sound fields generated
by LSAs [5]-[9]. Radiation synthesis has been approached by
solving an inverse problem using numerical optimization and
driving the LSA elements with finite impulse response (FIR)
filters [10]-[14].

In this paper we approach the radiation synthesis problem
analytically, by applying findings from the broader theory of
sound field synthesis (SFS). In fact the present work is strongly
related to the discussions in [15]. Linear loudspeaker arrays
have been discussed for Wave Field Synthesis (WES) [16]
and for the Spectral Division Method (SDM) [17]. Usually,
the individual sources — termed secondary sources in SFS —
are modeled as spherical monopoles, resulting in a simplified
mathematical formulation. Approaches exist which implement
model- or data based loudspeaker directivities into SFS algo-
rithms [18]-[23].

We briefly revisit SFS theory and derive a suitable driving
function for an LSA beginning with a continuous secondary
source distribution (SSD). For clarity of analysis, spatial
discretization [1, I1.3.] and spatial truncation [24] of the LSA
are treated separately. This paper’s scope is restricted to the
spatial sampling process and its implications. We propose an
optimal waveguide design from a theoretical viewpoint which
is in agreement with the known WST criteria 1,2. We will show
that an ideal waveguide has a directivity that theoretically is
able to suppress all spatial-aliasing components for uniformly
driven LSAs. The simulations are compared to measurements
of a real waveguide. Spatial truncation and its interaction with
discretization are discussed subsequently in [25].

II. NOMENCLATURE

This section defines conventions and notations that are used
throughout this study. Linear acoustics with constant speed of
sound ¢ = 343 m/s in a dissipationless medium under free-field



conditions is assumed. A position vector in space
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is defined with azimuth ¢ € [0,27), colatitude ¢ € [0, 7] and
the vector norm ||x|| = » = /22 + y? + 22. The wave number
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with ¢ = /(k, k), denoting the scalar product with (-, ). The
dispersion relation of linear acoustics
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holds. The scalar product (k,x) = k, @ + ky y + k. z is used
for the description of plane waves in cartesian coordinates.
The temporal angular frequency w = 27 f in rad/s is linked
to the temporal frequency f in Hz. The imaginary number is

denoted by j (j2 = —1). The temporal Fourier transform sign
and normalization convention
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is used for the relationship of the sound pressure p(x,t) in
time domain and its temporal spectrum P(x,w). The spatial
Fourier transform sign and normalization convention
+0oo
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is used. A spectrum with respect to time and space P(k,,w)
is termed spatio-temporal spectrum and due to its nature of a
plane wave decomposition using the spatial Fourier transform,
the term angular spectrum is used in the remainder. The con-
ventions imply that the wave vector k denotes the propagation
direction of the wave. Thus,

plo,£) = R { e fomod) e it} ®)

describes a unit amplitude monochromatic plane wave which
propagates into direction of kpw = (kzpw, kypw, k- pw)’
and oscillates with wpw. J{-} denotes the real part.

For the chosen conventions the three-dimensional, freefield
Green’s function is defined by
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with the source position xg [26, Ch. 27]. It models an ideal,
radiating spherical monopole [27, Ch. 5.16].
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Fig. 1: Side view of the discussed SSD setup. The infinite SSD
is located on the y-axis. Sound field reproduction is considered
within the zy-plane (z > 0). The SSD becomes continuous for
a secondary source spacing Ay — 0. The LSA is later modeled
by spatially sampling the driving function and modifying the
Green’s function in (23) to account for piston-like sources.

The SSD, i.e. the loudspeaker array with infinite length and
spatial discretization Ay is located on the y-axis. The sound
field is evaluated in the zy-plane for z > 0, cf. Fig. 1.

I1II. SOUND FIELD SYNTHESIS

A well known approach for numerical sound field predic-
tion of a finite LSA [9] is based on the complex summation
of N LSA elements, that are defined by their individual and
frequency dependent farfield directivity patterns A, (p, ¥, w)
and temporal frequency dependent weightings D(Xg n,w).
This temporal frequency filters define magnitude, phase and
delay for the individual secondary sources and are termed
driving functions in SFS. For discrete source positions Xg p
we can therefore write, cf. [9, (11)], [28, (2)]

0% Ix—xo.all

N
P(x,w) = Z D(xg,n,w) A, (X,X0n,w)

n=1 47F||X—X07nH.

(10)

While this equation is useful for the prediction of sound fields
and constitutes the basis for numerical optimization schemes
[10]-[14], it does not explicitly reveal how spatial aliasing
and undesired side lobes are generated and where to find
their physical origin. Since we are majorly interested in this
question, the problem is retraced to the fundamentals of sound
field synthesis. The Rayleigh integral using Neumann Green’s
function [29] is subsequently extended towards a full signal
processing framework cf. Fig. 2, that was developed for SFS
using planar and linear arrays, cf. [30, Ch. 5], [15], [31]-
[35]. In [30, Ch. 5], [15] WFS-based reproduction of a virtual
spherical monopole was analyzed with the acoustic signal
processing framework. This signal processing model will be
used throughout the paper for uniformly driven, infinite linear
arrays, whereas a subsequent study [25] discusses uniformly
driven, finite length linear arrays. The analysis performed here
can be considered as a special case of SFS.



A. 3D SFS with a continuous SSD

We start our discussion with the fundamentals of SFS,
cf. [29], [36], [37]. First, consider a planar SSD within the
yz-plane for which we introduce the position vector xg =
(0,90, 20)" on the SSD. SFS in the target half-space = > 0,
i.e. for x = (z > 0,y,2)7 is realized by the so called single
layer potential (SLP) [29]

P(x,w) /on,

This approach is known as three-dimensional SEFS.

The implicit solution of the driving function is well known.
It corresponds to the Rayleigh integral under Neumann bound-
ary condition imposed to the Green’s function [29]. The driving
function reads

G(||x — xo||,w) dyodzo. (11)
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using the directional derivative with the unit inward normal
vector n(xg) = (1,0,0)”. Provided that the sound pressure
P(x,w) of a virtual source is known and assuming that the
integral (11) converges, the solution for P(x,w) is unique and
exact, as expected for the Rayleigh integral as a forward wave
field propagator [38, Ch. 6.5, 9]. This approach was used for
the modern? formulation of 3D Wave Field Synthesis [16],
[41].

An explicit solution of the driving function is derived by
applying the convolution theorem to the integral (11). For
uniform SSD characteristics, the free-field Green’s function is
shift-invariant and (23) can be interpreted as the convolution

P(x,w) = D(x,w) #, %, G(x,0,w) (13)

along y and z for a chosen x in the target half- space The
Green’s function G(x,0,w) in the origin xo = 0 is used
as the reference monopole and is convolved with the driving
function, cf. upper row of Fig. 2. The convolution corresponds
a multiplication in the angular spectrum domain

P(x,ky, k., w) = D(@, by, k2, w) - Go(@, ky, k2, w),  (14)
for which (7) has to be applied w.r.t. yo—ek, and zo—e k..
Explicitly solving for D(zx, k,y, k,,w) yields
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and the inverse spatial Fourier transform (6) leads to the
driving function

D(x, ky, k. ,w) = (15)
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provided that the integral converges. This technique as an
explicit SFS solution was introduced as Spectral Division

D(X(),

2The term *modern WFS’ is frequently used for WFS that uses the Neumann
Green’s function Rayleigh integral, whereas ’traditional WFS" is referred to
as the Dirichlet Green’s function Rayleigh integral approach, e.g. [39], [40]
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Method (SDM) in literature [42], [17, p. 2040]. The angular
spectrum of the desired sound field is given as

P(x,ky, ke, w) = P(ky, koy,w)e 7727 65(w — wpw). (17)

It can be shown that the driving function is independent from
the chosen spatial position z [17], [29]. The driving function
(16) can therefore reformulated to
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(19)
holds for the region of interest, cf. [38, Ch. 2.2], [43, Ch. 2.6].
The 1 case in (19) describes propagating waves, the 2™ case
corresponds to evanescent waves.

The monochromatic plane wave (8) with radiation direction
kpw = (kz.pw, ky.pw, k-pw)” into the target half-space
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is decomposed into [17, (49)], [44, (C.6)]
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The driving function (18) is derived to [17, (7)], [44, (3.68)]
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which is also obtained by evaluating the directional derivative
(12). This is due to the exact equivalence of WFS and SDM
for 3D SFS [17], [29].

3D SFS with a planar, continuous SSD is not feasible for
sound reinforcement and rather linear arrays were introduced.
The fundamentals of so called 2.5D SFS using an infinite linear
array are discussed in the next subsection, following [44, Ch.
3.71, [17, Sec. 1IB]

B. 2.5D SFS with a continuous SSD

The sound field P(x,w) produced by an infinite, continu-
ous, linear array is described similar to (11)

P(x,w) /DXO7

using x = (2 > 0,9,2)7 and xo = (0,90,0)” according
to Fig. 1. The infinite linear SSD is incapable of radiating
three dimensional plane waves due to the dimension reduction.
Therefore the possible wave radiation directions correspond
to a reduced set of wave number vectors, i.e. k;, k, and
k. cannot be controlled individually. The wave number k,
describes the wave propagation along the SSD orientation.
The radial wave number k, describes the radiation direction

G(J|x — xol|,w) dyo (23)
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Fig. 2: The single layer potential for a linear SSD located on the y-axis. Representation of continuous, infinte-length case (top)
and the discretized, finite-length model (bottom). Convolution is denoted by ®, multiplication by .

of conical wavefronts. For a plane wave radiation direction
Upw, pw

(Wﬂ)2 — K2 PW = (WP;W)2 cos? wpw sin? Opw + cos? Opw
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c
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holds. For a desired wpw and chosen ky pw [44, (3.76)]
(wﬂ)2 — kg pw = const = k2 oy (25)

follows, and either Jpw or wpw can be controlled.
Similar to (13) the convolution along the y-axis in (23) can
be transferred to an angular spectrum multiplication w.r.t. k,

D(z.ky. z,w) - Go(z, ky, z,w). (26)

This holds again under the assumption that the SSD charac-
teristics is uniform, i.e. the Green’s function is shift-invariant.
Explicitly solving for D(z, k,, z,w) yields

Pz, ky, z,w)
GO(T ky,Z,W)’
and the inverse spatial Fourier transform (6) leads to the
unknown driving function

Pz, ky, z,w) =
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provided that the mtegral converges.

We proceed with the derivation of a suitable driving function
D(yo,w) and its angular spectrum D(k,,w) for a wave radi-
ation perpendicular to the SSD, as this is considered a special
case of SFS, which initially derived the first WST criteria [1].

C. Derivation of an LSA Driving Function for 2.5D SFS

A thorough derivation of the driving function is found in
[44, Ch. 3.7], [17, 1I. B] and is briefly revisited here. First the
angular spectrum for the Green’s function G(x,0,w) in the
origin is given as [44, (C.10)], [17, (52)]

A'me( (=) -5 JT)
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for k7 < (%)? (i.e. propagating waves), where H, (2)( -) denotes
the 0th order cylmdrlcal Hankel function of 2" kind [45,
§10.1]. For k° > ( p) (i.e. evanescent waves)
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holds, using the modified Bessel function Ko(-) of 0" order of
2" kind [45, §10.1]. The angular spectrum of a desired plane
wave into direction kpw = (ks pw, ky pw, k- pW)T is given by
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for propagating wave radiation. Note the application of the
Delta function’s sifting property. The numerator exhibits a
three-dimensional problem (plane wave), while the denomi-
nator is two dimensional (linear array, cylindrical wave ra-
diation). SFS, that employs this mismatch is known as 2.5D
synthesis, for which the so called 2.5D Rayleigh integral was
introduced in literature [30], [46]. Matching both geometries is
conveniently realized, when we are only interested in the sound
field within the xy-plane, i.e. z = 0 and thus consequently
restrict the plane wave radiation only to this plane, i.e. k. = 0.
Hence, for dpw = 7/2 this yields an axial and radial wave
number

Wpw

k’z.Pw = (7

The driving functions’s angular spectrum is then reformulated
to [44, (3.78)], [17, (16)]

e I FrvT 2w §(w — wpw)
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D(z,ky,w) = 27 6(ky — kypw)
(34)

and depends on the distance x from the SSD. The sound field
is therefore only correctly synthesized at the chosen reference
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(a) Angular magnitude spectrum of Gg(ky,w). Ideal driving func-
tion D(ky,w) for a full-band cylindrical wave into z-direction
schematically indicated with a black line, the dot indicates the
contribution for f = 3430 Hz.
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(¢) |Go(ky,w)| and sampled driving function Dg(k,,w), dis-
cretized with Ay = 0.25m. Spectral repetitions indicated in red.
The frequency f = 3430 Hz is above the spatial Nyquist frequency,
propagating aliasing contributions marked by red dots.
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(b) Cylindrical wave into z-direction with f = 3430 Hz synthesized
by a continuous SSD of infinite length.
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(d) The same intended wave as above, here synthesized by a dis-
cretized SSD using Ay =~ 0.25m. The red arrows show the directions
of propagating spatial aliasing components.

Fig. 3: Ideal sound field synthesis by a continuous SSD (top) and with spatial aliasing due to a discretized SSD (bottom). The
angular spectra of the driving functions D(k,,w), Ds(k,,w) and of the farfield Green’s function Go(ky,w) (2rer = 100m)
shown on the left. Magnitude of G(ky,w) in dB is normalized to k, = Orad/m and f = 1kHz with a 3 dB step colormap.
Corresponding wave fields { P(x)} in the xy-plane for the frequency f = 3430 Hz are depicted on the right side.

line x = x.s. A spatial inverse Fourier transform (6) of (34)

yields [17, (17)]
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c

exp[—j COS Ypw - -Tref]
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It can be shown that 2.5D SFS does not reproduce a desired
plane wave using a linear SSD. The sound field rather exhibits

sin wpw - Yo] 27 0 (w — wpw).

an amplitude decay proportional to 1/4/x in the farfield which
is typical for a cylindrical wave amplitude decay [44, (3.38)],
[17, (20)].

We specify (34) towards our special problem of interest:
The radiation perpendicular to the SSD within the xy-plane.
Therefore kypw = 0 is chosen, i.e. ¢pw = 0 from which
krpw = “2* follows. The adapted driving function’s angular



spectrum reads
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For “Z% - gt > 1 the large argument approximation of the
Hankel function [45, 10.2.6] leads to the proportionality
1 wpw
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Hence, the dr1vmg function (34) inherently includes a 3 dB/oct.
temporal frequencies highpass filter for the case of our interest.
For further discussion we omit the compensation filter (37)
and the phase shift =57 in (36) and restrict the driving

function’s angular spectrum to

D(Zeg, ks w) = 278(k,)  (36)

D(ky,w) =2m8(ky) - 275w — wpw), (38)
which yields the driving function
D(yo,w) =1-276(w — wpw) (39)

by inverse spatial Fourier transform. Eq. (39) confirms that an
infinite, continuous line source driven with constant volume
acceleration produces a cylindrical wave with a 3 dB/oct.
lowpass behavior and a 3 dB level drop per distance doubling
in the farfield, cf. [24, pg. 12]. In essence the 3 dB/oct.
highpass (37) compensates the temporal frequency lowpass
characteristics of the line source. In practical LSA applications
this is referred to as the coupling filter.

The angular spectrum of the desired full band driving
function—we omit the dependence on 2 7 §(w —wpw) from here
on—

D(k,,w)=2md(k,) (40)

is depicted in Fig. 3a, together with the farfield Green’s func-
tion Go(&ret, ky,w) (29). For a full andio-bandwidth wavefront
into x-direction, D(k,,w) takes the shape of a vertical line.
The propagating part of G (k,,w) is bounded to the triangular
region where |k,| <[], this also referred to as the visible
region of the array. Then, each point coincident with D(k,,w)
corresponds to a monochromatic cylindrical wave, as exem-
plarily shown for a single frequency in Fig. 3b. This plot was
realized by using (35) with wpyw = 0, wpw = 27 - 3430 rad/s
and z,f = 1m in the discretized version of (23)

P(x,w) = Z D».5p.spM(Zref, Yo,n, W) G(||X — Xonl, w) Ayo
nez
(41)
using a 50 m long SSD, centered at the origin with Ay =
27 /500 m. Due to the chosen parameters the SSD can be con-
sidered as continuous (discretization does not generate spatial
aliasing) and infinitely long (negligible truncation artifacts in
the plotted region). The wave field exhibits a -3 dB magnitude
decay per distance doubling and has a positive unit amplitude
along the reference line z,r = 1m as desired.
Finally, the temporal-frequency lowpass behavior of a line
source can be observed in the Green’s function’s magnitude
along the line of D(k,,w) in Fig. 3a.

IV. SFS SIGNAL PROCESSING FRAMEWORK

The SFS signal processing framework in Fig. 2 was intro-
duced in [15], [19], [30] for WFS. The methods will be applied
to our problem of interest in what follows.

A. Spatial Truncation of the Line Soure

Practical arrays are obviously restricted to a finite length.
This is realized by truncating the driving function with a spatial
window w(xg) € R in our signal processing model, cf. Fig. 2.
With this signal processing step the Rayleigh integral is thus
transformed to the Rayleigh-Sommerfeld diffraction integral
[47, Ch. 8.11.2], [38, Ch. 6.4]. The synthesized sound field
will thus only be correct in the so called Fresnel region in
front of the array [48] if either the SSD is enclosed into a rigid
wall or —for SSD setups free in space— the length of the SSD
is much larger larger than the considered wavelength A and
the wavelength is much smaller than the evaluation distance
|Ix — xo||. A thorough treatment of possible windowing arti-
facts in this context (i.e. leakage, near-/farfield characteristics
[1]) is beyond the scope of this contribution. Truncation is
discussed in detail in [25]. For concise argumentation, we
consider only the discretization of the SSD in the remainder
of this paper and assume w(yg) = 1.

B. Spatial Discretization of the Line Source

A continuous SSD cannot be realized in practice and is
usually implemented as a linear array of discrete loudspeakers.
This constitutes a spatial sampling process of the driving
function as depicted in Fig. 2 and Fig. 4 (whereby ignoring
the truncation w and Hpr, Hpost processing stages for the
moment). Assuming identical speakers, equidistantly arranged
with Ay, ideal sampling is modeled by multiplication with
an accordingly spaced Dirac comb. The discretized driving
function Dg(yy,w) reads

+0
Ds(yo.w) = D(yo,w) - Y 6(yo—pnly), (42)
p=—0C
=: AyLH %%)

where the shorthand notation is obtained by dilating a Dirac
comb T (yo) = S-4°  6(yo — 1) [49, (11.1)] with unit
spacing. The spatial Fourler transform pair for the Dirac combs
(42) is known as

fﬂyo—uAy)o—" Z5< )

p=—00 p=—20
= 35 1(KY) = ("2
(43)
With [49, (11.33)]
Diyo,) - T2 ) oo L Dk, ) w, (LAY
Ay Ay 2m Y 2r

44

we obtain the angular spectrum of the ideally sampled driving
function

Ds(ky,w) =3 u; D(k Lw). (45)

For our problem at hand we thus have to deal with the sampled
version of (40)

DS(ky:W):i Z 5(]%/_ %) (46)



In Fig. 3¢ Ds(ky,w) is schematically indicated for a spa-
tially discretized SSD using a secondary source spacing of
Ay =~ 0.25m for which the spatial Dirac comb spacing
Aky = 27/Ay = 25rad/m holds. Compared to Fig. 3a the
additional repetitions in the angular spectrum stemming from
the Dirac comb are clearly indicated. Their coincidences with
non-zero values of the Green’s function indicate additional
propagating contributions in the synthesized sound field. This
is commonly called spatial aliasing.

The resulting sound field can be analytically given (cf. [17,
Sec. IV.B]), when the angular spectrum

P(x,ky,0,w) = Ds(ky,w) - Go(x, ky,0,w) 47

for the considered xy-half-plane undergoes an inverse spatial
Fourier transform (6). This yields [17, (37)]

P(z,y,0,w) = A—y?ﬂ5(w—wcw)x

= 27 —iniZy

E G0($7ky:MA7U,O,W)'e A (48)
J1=—00 ‘

by inverse spatial Fourier transform and subsequent simplifica-
tion. For |1 Aky| < % only propagating waves are taken into
account, which reduces the sum in (48) to finite extent. The
exponential term in (48) describes the component along the
y-dimension. Note the discrete set of possible wave numbers
due to the discrete driving function’s angular spectrum. The
Green’s function’s angular spectrum describes the component
into radial direction. Both components together describe a
cylindrical wave with radiation angle ¢,. For p = 0 the
intended cylindrical wave perpendicular to the SSD (i.e. into x-
direction) is generated. For all other s that fulfill [;s Ak, | < £
propagating cylindrical waves are synthesized that manifest
as spatial aliasing. The radiating angles ¢, of the spatial
aliasing wave fronts are derived with sin 20 = (ky ,20)/%
and are strongly dependent of the temporal angular frequency
w. For frequencies smaller than
c

I Ry T [sngm])’
no propagating spatial aliasing components will be synthe-
sized, cf. [17, (38)]. For our problem at hand wpw = 0, (49)
reduces to

(49)

f<Aiy &S Ay <A (50)

denoting the wavelength A\ in m, cf. [1, sec. I.3.a]. Thus, for
Ay < A the Green’s function generates a propagating wave
only for © = 0 and no spatial aliasing occurs. Note that this
criterion is different from that found in [3, sec. 3.1] for a
discretized linear array of finite length (Ay < A/2, WST
#2). In [1, I1.3.a.] an equivalent derivation is given and a
sound field, that is corrupted by spatial aliasing, was named
chaotic”, which is a deterministic phenomenon due to (48).

Thus, for a spatially discretized SSD (here Ay ~ 0.25m),
a propagating sound field for f = 3430Hz is synthesized
which consists of the desired cylindrical wave into x-direction
plus four weighted spectral repetitions at y = +1, +2 in (46)
due to |;tAk,| < . The radiating angles of the additional
cylindrical waves are derived to ¢,—+12 = £23.4°, £52.7°.
The resulting sound field is depicted in Fig. 3d. This plot was
realized by using (35) with wpw = 0, wpw = 27 - 3430 rad/s

and zr = 1lm in (41) with a 50 m long SSD, centered at
the origin with Ay = 27 /25m. The originally intended wave
(cf. Fig. 3b) is corrupted due to destructive and constructive
interferences with the additional waves. The chosen SSD dis-
cretization does not allow the reproduction of a homogeneous
wave at this frequency. It is important realizing that the sound
field remains corrupted over the full space when performing
SFS with an infinite SSD. This is in contrast to finite length
SSDs, where a spatial aliasing free region exists in far distances
to the SSD, cf. [25].

Spatial aliasing should obviously be avoided for uniform
sound reinforcement in the listening area. We therefore need a
methodology to suppress the spatial repetitions in the driving
function’s angular spectrum (46). This will be elaborated in
the next sections.

C. Pre-/Postfilter for the Ideal Sampling Model

In classical baseband sampling theory the prefilter
Hpre(yo,w) and the postfilter Hpos:(yo,w) in Fig. 2 and Fig. 4
are usually understood as the anti-aliasing and the reconstruc-
tion filter respectively, both with ideal spatial lowpass char-
acteristics. Before sampling the driving function, Hpy(ky,w)
must ideally suppress all contributions for |k,| > 7/Az (i.e.
above the Nyquist frequency) ensuring a correctly sampled
baseband. Subsequently, the ideal postfilter Hpog(k,y,w) re-
moves all spectral repetitions in D, (k,,w) for correct base-
band reconstruction. Artifacts due to a non-ideal prefilter have
been termed aliasing error or pre-aliasing, those due to the
postfiltering stage reconstruction error or post-aliasing, cf.
[50]. In SFS literature the different aliasing types are typically
not strictly separated in terminology and spatial aliasing is
used to subsume all artifacts. In the context of SDM theoretical
spatial postfiltering schemes were discussed in [22], [51].

In most practical SFS applications and radiation synthesis
approaches however, explicit spatial pre- and postfiltering is
omitted in the discussion (i.c. Hpr(ky,w) = Hpost(ky,w) =
1). For our radiation synthesis problem at hand, dropping
the prefilter is well justified: the continuous driving function
D(k,,w) in (40) is already spatially band-limited and pre-
aliasing cannot occur.

Omitting the postfilter on the other hand is not recom-
mended: Using (47) with (29) and (46), the sound field
P(xz,ky,0,w) is synthesized as a product of the two functions
Dg(ky,w) and Go(z,k,,0,w), which both exhibit infinite
spatial bandwidth. This results in post-aliasing as illustrated
in Fig. 3d. Therefore we aim for a spatial lowpass postfilter.
The corresponding sampling model in the angular spectrum
domain is shown in the block diagram in Fig. 4.

With (47) and (46) we deduce, cf. [22, (36)]

ideal sampling
P(z,ky,0,w) = Dg(ky,w) - Hoou(ky,w) - Go(2, ky, 0, w)

loudspeaker as spatial lowpass

(51
and may define

G' (2, ky, 0,w) = Hpose(ky,w) - Go(z, ky, 0, w), (52)
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Fig. 4: The single layer potential for a linear, spatially discretized and truncated SSD in time-frequency domain (top) and angular

spectrum domain (bottom).

which we term Green’s-like function® . The postfilter is split
from the sampling stage and merged w1th the Green’s function.
This allows us to model an ideally sampled driving function
and take loudspeaker farfield directivities into account, cf.
(10). In practice the used loudspeakers exhibit a finite spatial
bandwidth and thus operate as a (non-ideal) reconstruction
filter. This method was also used in [18], [19], [22]. In [51,
sec. 3.1] theoretical spatial lowpass secondary sources were
discussed and denoted G augi-atias-

We proceed with the derivation of Green’s-like functions for
baffled piston models (as also done in [1]), which will serve
for further examination of our problem.

V. PISTON GREEN’S-LIKE FUNCTIONS

The farfield radiation characteristics of a plane baffled
piston is derived from the Rayleigh integral’s farfield approx-
imation [26, (26.4)], [43, (2.84)]

PFar(X w):2jwp0 (”X*XO”,W)X

// (30,

for which ¢ ||x — x|/ > 1. The piston is here located in
the yz-plane, thus xo = (0,40,20). The evaluation points
are denoted by x = (= > 0,y, z). The nominal atmospheric
density is denoted by po in kg/m3. We use the piston’s normal
velocity temporal spectrum V;,(xg,w) into z-direction. With
(7) the integral in (53) is identified as the two-dimensional
spatial Fourier transform V,, (yo, z0,w) c— V(k,, k., w) and
therefore

e Hilky votks20) Qi d (53)

Prar(x,w) = 2j py Glx — Xol.w) - Vil y).  (54)

We extend (54) with the complex source strength temporal
spectrum, sometimes referred to as the volume flow Q(w) [27,

3Note that this is not a Green's function by strict definition, rather a
particular solution of the wave equation with a different inhomogeneity
# &(x — xg). We have chosen the term to stress its role of a propagator
into space. Informally speaking, G’ does for a loudspeaker modeled with its
farfield directivity what Gg does for monopoles.

pg. 1751, [26, ch. 18.3]

V(kyv k., "“)
Qw)

H(ky,k,w)

Prar(x) = 2Q(w) jw po G([|x — x0[,w) (55)

and define the dimensionless directivity function H(k,, k., w)
[26, (26.7)]. The freefield Green’s function is usually inter-
preted as a velocity potential ® stemming from a unit source,
so (55) is rewritten accordingly:

Dppr(x,0) =2Q(w) G

using P(x,w) = jw 0o ®(x,w) [26, ch. 13.8]. For our half-
space problem at hand, the volume flow is normalized to () =
1/2 (m3/s)/Hz to be consistent with the unit volume flow of
the freefield (full space) Green’s function. The Green’s-like
function for our 2.5D SFS problem — we only consider k,—
then reads

(IIx = xoll,w) H(ky, kz,w)  (56)

=G'(||lx = xol|,w)
=G(lx = xol,w) - H(ky,w)  (57)

(I)Far,unitQ (X; (,d)

and the spatial Fourier transform with respect to y yields

G' (2, ky,0,w) = Gy(z, ky, 0,w) - H(ky,w) (58)
using (29). We recognize H(ky,w) = Hpost(ky,w) ((58) vs.
(52)), that we previously used to interpret the product of
the freefield Green’s function and a spatial postfilter for the
reconstruction process within the SFS signal processing model.
Recall that k, = * sin ¢, s0 Hpog (k. w) could be interpreted
as a function of ¢ as well, which is a familiar representation
of loudspeaker directivity patterns, here for the vertical orien-
tation. Note that evanescent waves are not considered since the
postfilter model holds only under farfield assumptions. As a
formal consequence, we define Hpoy(ky.w) = 0 for |k, | > <.

A single spherical monopole located at xg = 0 exhibits a
postfilter Hyfonopote (ky. w) = 1.

A baffled circular piston with radius rg (ro = y2 + 22
located in the yz-plane, centered around the origin and driven
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Fig. 5: Comparison of postfilters for a line and circular piston of same dimensions. Magnitude of farfield G., (k,,w) in dB is
normalized to &, = Orad/m and f = 1kHz with a 3 dB step colormap.

with constant velocity is described by the postfilter [26,
(26.42)], [27, (7.4.17)]

2Jy(kyro)  2J1(% sinpr)
ky o B “ sinprg

HCirc(kya w) - s (59)
where .Ji () denotes the cylindrical Bessel function of 1% kind
of 1% order [45, (10.2.2)]. Note that for negative k, [45,
(10.11.1)] is valid.

A baffled linear piston of length [ and infinitesimal width
located at |yo| < I/2 with constant velocity is characterized
by the postfilter [26, (26.44)], [27, (7.3.3)]

sin (k, L sin (¢ sinp &
HRect(kyaw) = k‘( ?; 2) = w(c 7 2). (60)
Yy 5 = bll’lgDi

In Fig. 5 the Green’s-like angular spectra for a line piston and
a circular piston of same dimension (I = 3” and ro = 37/2
respectively) are depicted. For increasing k; magnitude decay
indicates spatial lowpass characteristics.

VI. INFINITE AND DISCRETIZED LINE SOURCE ARRAY

We now discuss LSA design criteria for spatial-aliasing-
free sound field reproduction. Recall our problem at hand using
(46) and (51) for a desired spatial-aliasing-free cylindrical
wave into z-direction, i.e. k; = %, ky=0,k,=0.

Table I indicates the frequency range for discretized SSDs.
We recognize that the spacing between secondary sources must
not exceed a few mm to reproduce a full band spatial-aliasing-
free sound field, cf. [3, pg. 918]. This was not considered
a feasible approach in the past, although commercial LSA
designs* with Ay = 21 mm exist meanwhile.

Instead of, an LSA element is designed with electrodynamic
loudspeakers for the low and mid frequencies and employs
waveguides for the high frequencies > 1 — 2kHz.

4e.g. Martin Audio OnmniLine®

circ

A. Reproduction with Circular Pistons

We model an electrodynamic loudspeaker for A > ry with
a circular piston using the reconstruction filter (59). Circular
pistons with radius 9 = 15" /2 and r9 = 6.5” /2 as indicated
in Tab. I are discussed due to their practical usage for LSA
element designs. In Fig. 6a, 6b the Green’s-like functions
Gl;.o(ks) are depicted in the angular spectrum domain. They
exhibit the directivity pattern of (59) compared to that of
a spherical monopole in Fig. 3a. The Green’s-like function
will be triggered by the spectral repetitions of the sampled
driving function’s angular spectrum Dg(k,.w) (46). Due to
the spatial lowpass characteristics, repetitions are attenuated.
This produces a sound field with less spatial aliasing. In order
to avoid it completely, ideal band limitation in the temporal
frequency domain has to be applied to the driving function,
cf. [51, sec. 3.1.2]. In our ideal examples this would require a
temporal frequency lowpass with cut frequencies at fip =900
Hz and frp =2078 Hz respectively. For multi-way loudspeaker
designs bandpass crossovers are employed. In real applications
the crossover lowpass frequency is much lower than the critical
anti-aliasing frequency due to electro-acoustical concerns. We
therefore conclude that perfect spatial-aliasing suppression is
uncritical for the low and mid audio frequencies.

Ay= 15 =0.381 m
Ay=6.5" =0.165lm
Ay= 3 =0.0762m
Ay= 17 =0.0254m

fuo aliasing < 900 Hz
fuo aliasing < 2078 Hz
fno aliasing < 4501Hz
Jio atiasing < 13504Hz

TABLE I: Anti-aliasing condition (50) for a discretized, infinite
SSD that should reproduce a cylindrical wave front perpen-
dicular to the SSD. Ay indicates the theoretically minimum
possible spacing between adjacent, non-overlapping circular
pistons with radius ro = Ay/2.
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B. Reproduction with an Ideal Waveguide and is convolved with the ideally sampled driving function

D , 42), cf. Fig. 4. This can be given as
Since the required small distances between the secondary s(yo,w) (42), 8 &

sources for high frequencies were not feasible in the past, +o0

waveguides were introduced in the literature [2, Fig. 11]. Re- p W)= |1- S(vo — wA) | * rect <@) )
call that we want to realize the driving function D(yp,w) =1 sea(yor ) N;oo Wo = dy)| =, !

(39). From [1, 1.3.] and [3, Fig. 6] we deduce that a waveguide (62)
can be modeled as a line piston of length . The resulting

driving function using waveguides is piece-wise constant with The Dirac comb stemming from Dg(yo.w) (Fig. 7, red) is
amplitudes D(yo,w) € {0,1}. This is illustrated in Fig. 7 and  gmeared by the convolution with the rect-function yielding
represents the reconstructed driving function Dsgeet(Y0;,w).  Dg peet(yo, w) (Fig. 7, blue). By splitting the postfilter from
A similar visualization was used in [3, Fig. 6] to motivate  the sampling process and merging it with the Green’s function

waveg}lide modeling. We proceed to derive DS,Rect(yOa"‘{) (52), we see that the Green’s-like function becomes an ideal,
analytically. The postfilter Hpost(yo.w) = Hpe(yo,w) i8S  baffled, linear piston with length [ and constant potential,
expressed as the rect-function, cf. [49, (9.19)] instead of an ideal monopole.

From Fig. 7 we graphically deduce that the driving function
/ ©61) D(yp,w) = Dspgect(yo,w) = 1 is perfectly reconstructed
0 else for | = Ay as intended for spatial-aliasing-free sound field
reproduction. This is proven within the angular spectrum
domain: With the spatial Fourier transform (7) of (61) [49,

1 fi <1
Hyee(yo, w) = rect (%) = { or [yof < 3

D(yo,w) (9.24)]
— D(yo,w) Ds(yo,w) ™ Dsgect(yo.w) sin (kél) L
: Yy
l Hgeei(ky,w) =1- T =-sinc (2) (63)

we re-identify the proposed postfilter (60). Note the normal-
ization mismatch by [/ that stems from our chosen definition
of a unit source Green’s-like function, which is independent
Ay of the piston’s length, cf. (56). Inserting (46) and (63) into
Ds rect(ky, w) = Dg(ky,w) - Hreet(ky, w) of (51) we obtain

27)] l sin (%> .

Ay

Fig. 7: Spatial discretization and reconstruction: continuous

driving function D(yy), ideally sampled driving function 1 &

Ds(yo) and reconstructed driving function Dsgeci(y0) With the  Dg geer(ky, w) = | — Z 27 6(ky —
rect-function used as the postfilter. Ay pi=— 50

10



Hence for [ = Ay follows

—+oc
27
DS’Rect(ky,w) = Z 275(]{/'?/ 7/14?:(/) .
p=—oc 2
(65)
The impulses w.r.t. y in the Dirac comb with spacing Ak, =
27n/Ay = 27/l are weighted by the sinc-function. The
individual contributions read
27
sin (M 2y Ay)

21

Dsrect(ky,w), = 2md(ky — p A—y) WAy (66)
D (yy0) s = 27 6k 27T) sin (je7) ©7)
SReet Iy, W)y = 20Uy — fh 1) — 2
For 1 = 0 we get (40)
DS,RCCt(k’y,w)H:O = 277'(5(/4,!/) = D(kww) (68)

and for i # 0 we get due to the zeros of the sine function

Ds rect(ky, w)uz0 = 0. (69)
This proves perfect reconstruction
_ [D(ky,w) =2md(k,) if p=0
Ds pect(ky, w) = {0 otherwise (70)

In Fig. 5a the Green’s-like function Gi..(k,,w) and
Dg(ky,w) (46) are depicted for a line piston with length | =
Ay = 0.0762m. The intended driving function D(k,,w)
2w d(k,) is perfectly reconstructed and no spatial aliasing
occurs. This is due to the complete suppression of the driving
function’s energy for ¢ # 0 by the zeros of the sinc-term in
the Green’s-like function (60). Note that the zeros of the sinc-
function are equidistantly spaced with Ak, = 27 /Ay which
does not hold for the Bessel function J;(-) that was used for
circular pistons.

We conclude that the usage of a line piston for this special
case (uniformly driven array and Ay = [) is superior compared
to a circular piston for high frequencies: In the ideal case all
spatial aliasing energy is suppressed. This is not achievable
with circular pistons. However, for Ay > [ (this case is
depicted in Fig. 7, cf. [3, fig. 6]) the repetitions exhibit smaller
steps Ak, compared to Fig. 5a. The spectral repetitions no
longer coincide with the zeros of the Green’s-like function and
the quality of the spatial lowpass determines the suppression
of spatial aliasing. The comparison of a line and circular with
same dimension in Fig. 5 reveals an improved spatial lowpass
characteristics of the circular piston.

We can furthermore deduce, that it is obviously preferable
to use rather small Ay (i.e. large Ak,) and thereby small
pistons. Thus, in the ideal case no spectral repetitions would
enter the visible region |k,| < ¢ of the SSD, which allows
radiation synthesis with a high degree of freedom within the
propagating part of (29). This is useful for LSA designs, that
aim at electronical beamsteering and -forming methods, rather
than using geometry shaping of an uniform driven LSA, since
the spatial aliasing energy is triggered at very high temporal
frequencies, and thus ideally leaving the audio frequency band
uncorrupted from spatial aliasing. This implies that ideally no
additional postfilter is required and only the Green’s functions

11

acts as the reconstruction interpolator of the sampled driving
function. For very small Ay, and thus very small chosen ¢
and [, the postfilters of the circular and line piston become
less directive, as desired for this approach. In essence this was
confirmed in the simulations performed in [14]. It was proven
that a high driving granularity of the LSA—and thus using small
pistons—offers a higher degree of freedom for finding driving
functions to synthesize an optimized sound field®. Further dis-
cussions on the postfilter characteristics for LSA applications
can be found [25]. This paper also revisits the WST criterion
1 [3, sec. 3.2], that was derived for line piston driven LSAs.
This criterion introduced the Active Radiation Factor (ARF)
for an arbitrarily chosen tolerable aliasing contribution. For a
large number of LSA elements an ARF = [/Ay > 0.82 was
defined in order that aliasing contributions are at least 13.5 dB
lower than that of the desired wave front, which is consistent
with the discussions here for an infinite LSA. We proceed with
a comparison of our line piston modeling with a measurement
of a commercially available waveguide.

C. Reproduction with a Real Waveguide

This subsection examines the spatial lowpass character-
istics of a commercial LSA element. An equiangular 2°-
spherical balloon dataset of impulse responses from the single
loudspeaker box was measured in the far- and freefield, cf.
(54). The vertical isobars, i.e. the plane wave propagation
angles —m/2 < ¢ < 4nw/2 for ¥ /2 were ex-
tracted, smoothed in magnitude by 1/6 oct. and mapped to
ky = < sinp. All frequency responses were normalized by
the temporal spectrum of k, = 0, therefore linearizing the
spectrum on the main axis ¢ = 0. This yields the recon-
struction filter Hpog(ky. w) = Hwaveguide (ky, w). Subsequently
a 3 dB/oct. lowpass was applied to all spectra to obtain the
Green’s-like function Giy,yeguide (Ky:w). cf. (58). This allows
for direct comparison of the theoretical line piston Green’s-like
function (58)&(60) with the measured one. For the interesting
frequencies >1 kHz the behavior of the measured waveguide
can be considered as baffled due to the loudspeaker box
dimension/wavelength ratio. Because of the nonlinear mapping
k, = % sin ¢ the balloon dataset is not considered optimal for
this examination. We rather suggest a measurement along a
line and a subsequent spatial Fourier transform (7) to obtain an
equidistant k,-resolution, instead of an equiangular resolution,
cf. [52], [53].

We assume a sampling distance Ay = 0.36 m due to the
LSA element height, and an ARF=1. In Fig. 8a the Green’s-
like function Gg,(ky, w) of an ideal waveguide corresponding
to sec. VI-B is depicted for Ay = [. In Fig. 8b the measured
Green’s-like function Giy,,eeige (Ky,w) is shown for compari-
son. The model and measurement are in good agreement.

An additional analysis with a common vertical isobar plot is
conducted, which requires a remapping of the data in Fig. 8b.
The isobar plot is depicted in Fig. 9 up to 20 kHz. We
normalized all spectra to get a linearized, flat spectrum on
its main axis (i.e. for k, = 0, ¢ = 0). The spatial-aliasing
energy contributions are then given as absolute attenuation
values within the surface plot. The black horizontal line
again represents the intended driving function. The repetitions

SA commercial LSA design that employs this approach is e.g. the EAW
™
Anya  system.
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|| < 4, p # 0 are indicated with red curves. We recognize
that the driving function repetitions are coincident with the
zeros of the Green’s-like function and thus will be suppressed.
This confirms our modeling in sec. VI-B and good spatial
lowpass characteristics of the measured waveguide. Above 11
kHz the attenuation slightly becomes less than 10 dB for the
first repetition |p| = 1. For || > 4 the Green’s-like function
attenuates the driving function repetitions > 20 dB. It is worth
to note that Fig. 9 does not visualize the directivity of a whole
LSA but rather that of a single waveguide in its farfield.

VII. CONCLUSION

Based on sound field synthesis fundamentals, the sound
field radiation from a discretized, infinite, linear and uniformly
driven source was described. The radiation synthesis problem
for a line source array application was formulated for a
continuous secondary source distribution. Spatially sampling
of a suitable driving function models discrete loudspeaker
positions. This sampling process was then discussed in the
angular spectrum domain and the importance of a suitable
postfilter was emphasized. In practice the used loudspeakers
act as spatial reconstruction filters. By introducing loudspeaker
directivities, the WST criteria for required spatial-aliasing-
free sound field reproduction with a line source array were
confirmed. We conclude that spatial-aliasing-free sound fields
for high frequencies should be synthesized with line source
arrays that employ waveguides with an ideal active radiation
factor of one. Based on the discussions it is furthermore
suggested to choose a rather fine driving granularity, i.e. small,
individually driven pistons. This approach would displace the
spatial aliasing problem to higher temporal frequencies and
therefore a higher degree of freedom with regard to electronic
beamforming is achieved. This would allow improved per-
formance of finding driving functions in recently developed
numerical optimization schemes [10]-[14]. A real waveguide
measurement was presented that complies with the criteria
and is in good agreement with the proposed modeling. An
alternative interpretation of commonly used vertical isobar
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Fig. 9: Measured waveguide |G'y,yeguide (ky,w)| from Fig. 8b
as an isobar plot. Magnitude is normalized to ¢ = 0. Hence
the absolute attenuation values of the spatial aliasing energy
contributions are presented. The spectral repetitions |u| < 4,
w1 # 0 due to the discretized SSD are shown as red curves.
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