

Sound Field Synthesis of Virtual Cylindrical Waves using Circular and Spherical Loudspeaker Arrays

Nara Hahn and Sascha Spors
University of Rostock, Institute of Communications Engineering

138th AES Convention

Sound Field Synthesis

aims at the physical reconstruction of a desired sound field $S(\mathbf{x}, \omega)$ within a target region using a large number of secondary sources driven by individual signals $D(\mathbf{x}_0, \omega)$

Analytic methods

- Wave Field Synthesis (WFS)
- Near-field compensated higher-order Ambisonics (NFC-HOA)
- Spectral division method (SDM)

Analytic Source Models

- Various analytic source models are used
- Closed-form driving functions are known for

	NFC-HOA	WFS
plane wave	✓	√
line source	X	✓
point source	✓	✓
focused source	✓	✓
:		

Outline

- 1. spherical harmonics representation of the sound field of a line source
- analytic NFC-HOA driving function
- 3. evaluation of the synthesized sound field

Circular Harmonics Representation

circular harmonics expansion of a two-dimensional sound field (independent to the z-axis)

$$S(\mathbf{x},\omega) = \sum_{m=-\infty}^{\infty} \mathring{S}_m(\omega) J_m(\frac{\omega}{c} r \sin \beta) e^{im\alpha}$$

 α : azimuth angle, β : colatitude angle

 $\mathring{S}_m(\omega)$: expansion coefficient

 $J_m(\cdot)$: m-th Bessel function of the first kind

Circular Harmonics Representation

circular harmonics expansion of the sound field of a line source

$$-\frac{i}{4}H_0^{(2)}(\frac{\omega}{c}\|\mathbf{x}-\mathbf{x}_{ls}\|) = \sum_{m=-\infty}^{\infty} \underbrace{-\frac{i}{4}H_m^{(2)}(\frac{\omega}{c}r_{ls})e^{-im\alpha_{ls}}}_{\mathring{S}_{ls,m}(\omega)} J_m(\frac{\omega}{c}r\sin\beta)e^{im\alpha}.$$

$$\mathsf{x}_\mathsf{ls} = (\mathit{r}_\mathsf{ls}, \alpha_\mathsf{ls}, \frac{\pi}{2})$$

 $H_m^{(2)}(\cdot)$: m-th Hankel function of the second kind

Spherical Harmonics Representation

$$S(\mathbf{x},\omega) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \breve{S}_{n}^{m}(\omega) j_{n}(\frac{\omega}{c}r) Y_{n}^{m}(\beta,\alpha)$$

 $\tilde{S}_{n}^{m}(\omega)$: expansion coefficient

 $j_n(\cdot)$: n-th spherical Bessel function of the first kind

$$Y_n^m(eta, lpha) = \sqrt{rac{2n+1}{4\pi}rac{(n-m)!}{(n+m)!}}P_n^m(\coseta)e^{imlpha}$$
: spherical harmonics

 $P_n^m(\cdot)$: associated Legendre function

Spherical Harmonics Representation

$$S(\mathbf{x},\omega) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \breve{S}_{n}^{m}(\omega) j_{n}(\frac{\omega}{c}r) Y_{n}^{m}(\beta,\alpha)$$

$$= \sum_{m=-\infty}^{\infty} e^{im\alpha} \sum_{n=|m|}^{\infty} \breve{S}_{n}^{m}(\omega) j_{n}(\frac{\omega}{c}r) Y_{n}^{m}(\beta,0)$$

$$= \mathring{S}_{m}(\omega) J_{m}(\frac{\omega}{c}r \sin \beta)$$

$$\ddot{S}_n^m(\omega) = 4\pi i^{m-n} Y_n^m(\frac{\pi}{2}, 0)^* \mathring{S}_m(\omega)$$

Spherical Harmonics Representation of a Line Source

$$\breve{S}_{\mathrm{ls},n}^{m}(\omega) = -\pi i^{m-n+1} H_{m}^{(2)}(\frac{\omega}{c} r_{\mathrm{ls}}) Y_{n}^{m}(\frac{\pi}{2}, \alpha_{\mathrm{ls}})^{*}$$

Near-field Compensated Higher-order Ambisonics

explicit solution of the continuous synthesis equation

$$S(\mathbf{x},\omega) = \oint_{\partial V_0} D(\mathbf{x}_0,\omega) G(\mathbf{x} - \mathbf{x}_0,\omega) dA_0$$

based on the spherical harmonics expansion

$$\check{S}_n^m(\omega), \check{G}_n^m(\omega)$$

- considers radially symmetric secondary source distribution
 - 3D: spherical distribution of point sources
 - 2D: circular distribution of line sources

Near-field Compensated Higher-order Ambisonics

explicit solution of the continuous synthesis equation

$$S(\mathbf{x},\omega) = \oint_{\partial V_0} D(\mathbf{x}_0,\omega) G(\mathbf{x} - \mathbf{x}_0,\omega) dA_0$$

based on the spherical harmonics expansion

$$\breve{S}_n^m(\omega)$$
, $\breve{G}_n^m(\omega)$

- considers radially symmetric secondary source distribution
 - 3D: spherical distribution of point sources
 - 2D: circular distribution of line sources

Near-field Compensated Higher-order Ambisonics

explicit solution of the continuous synthesis equation

$$S(\mathbf{x},\omega) = \oint_{\partial V_0} D(\mathbf{x}_0,\omega) G(\mathbf{x} - \mathbf{x}_0,\omega) dA_0$$

based on the spherical harmonics expansion

$$\check{S}_n^m(\omega), \check{G}_n^m(\omega)$$

- considers radially symmetric secondary source distribution
 - 3D: spherical distribution of point sources
 - 2D: circular distribution of line sources
 - 2.5D: circular distribution of point sources

Driving Functions

3D NFC-HOA

$$D_{3D}(\alpha_0, \beta_0, \omega) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \underbrace{\frac{1}{r_0^2} \frac{\breve{S}_n^m(\omega)}{\breve{G}_n^0(\omega)}}_{\breve{D}_n^m(\omega)} Y_n^m(\beta_0, \alpha_0)$$

2.5D NFC-HOA

$$D_{2.5D}(\alpha_0, \omega) = \sum_{m=-\infty}^{\infty} \underbrace{\frac{1}{2\pi r_0} \frac{\breve{S}_{|m|}^m(\omega)}{\breve{G}_{|m|}^m(\omega)}}_{\breve{D}_m(\omega)} e^{im\alpha_0}$$

Driving Functions

3D NFC-HOA (2D sound field)

$$D_{3D}(\alpha_0, \beta_0, \omega) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \underbrace{\frac{1}{r_0^2} \frac{4\pi i^{m-n} Y_n^m(\frac{\pi}{2}, 0)^* \mathring{S}_m(\omega)}{\breve{G}_n^0(\omega)}}_{\breve{D}_n^m(\omega)} Y_n^m(\beta_0, \alpha_0)$$

2.5D NFC-HOA (2D sound field)

$$D_{2.5D}(\alpha_0, \omega) = \sum_{m=-\infty}^{\infty} \underbrace{\frac{1}{2\pi r_0} \frac{4\pi i^{m-|m|} Y_{|m|}^m (\frac{\pi}{2}, 0)^* \mathring{S}_m(\omega)}{\breve{G}_{|m|}^m (\omega)}}_{\tilde{D}_m(\omega)} e^{im\alpha_0}$$

Driving Functions

3D NFC-HOA (line source)

$$D_{3D}(\alpha_{0}, \beta_{0}, \omega) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \underbrace{\frac{1}{r_{0}^{2}} \frac{-\pi i^{m-n+1} H_{m}^{(2)}(\frac{\omega}{c} r_{ls}) Y_{n}^{m}(\frac{\pi}{2}, \alpha_{ls})^{*}}_{\breve{D}_{n}^{m}(\omega)} Y_{n}^{m}(\beta_{0}, \alpha_{0})}_{\breve{D}_{n}^{m}(\omega)}$$

2.5D NFC-HOA (line source)

$$D_{2.5D}(\alpha_0, \omega) = \sum_{m=-\infty}^{\infty} \underbrace{\frac{1}{2\pi r_0} \frac{-\pi i^{m-|m|+1} H_m^{(2)} (\frac{\omega}{c} r_{l_s}) Y_{|m|}^m (\frac{\pi}{2}, \alpha_{l_s})^*}_{\tilde{D}_m(\omega)}}_{\tilde{D}_m(\omega)} e^{im\alpha_0}$$

Numerical Simulation

	3D NFC-HOA	2.5D NFC-HOA
r_0	1.5 m	1.5 m
$N_{loudspeaker}$	484 ¹	64
maximum order	21	31
$f_{ m artifact-free}$	764 Hz	1128 Hz
	1.5 1.0 0.5 - 0.5 - 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.5 1 0.5 = 0 -0.5 -1 -1.5

Sound Field Synthesis toolbox (https://github.com/sfstoolbox/sfs) secondary monopole sources $\breve{G}_n^m(\omega) = -i\frac{\omega}{c}h_n^{(2)}(\frac{\omega}{c}r)Y_n^m(\beta_0,\alpha_0)^*$

¹Riesz s-energy approach

500 Hz

yz-plane

$$r_0=1.5$$
 m, $N_{\mathrm{loudspeaker}}=484$, $M=21$, $x_{\mathrm{ls}}=(r_{\mathrm{ls}},\alpha_{\mathrm{ls}},\frac{\pi}{2})$

1500 Hz

yz-plane

$$r_0=1.5$$
 m, $N_{\mathrm{loudspeaker}}=484$, $M=21$, $x_{\mathrm{ls}}=(r_{\mathrm{ls}},\alpha_{\mathrm{ls}},\frac{\pi}{2})$

Amplitude Decay for Fixed Source Position

$$r_0=1.5$$
 m, $N_{\mathrm{loudspeaker}}=484$, $M=21$, $\mathrm{x_{ls}}=\left(\mathit{r_{ls}},\alpha_{\mathrm{ls}},\frac{\pi}{2}\right)$

Amplitude Decay for Varying Source Position

$$r_0=1.5$$
 m, $N_{
m loudspeaker}=484$, $M=21$, ${
m x_{ls}}=(r_{
m ls}$, $\alpha_{
m ls}$, $\pi\over2})$ $f=500$ Hz

NFC-HOA

 $r_0 = 1.5 \text{ m}, N_{\text{loudspeaker}} = 64, M = 31, x_{\text{ls}} = (r_{\text{ls}}, \alpha_{\text{ls}}, \frac{\pi}{2})$

Amplitude Decay

$$r_0=1.5$$
 m, $N_{\mathrm{loudspeaker}}=64$, $M=31$, $\mathrm{x_{ls}}=(\mathrm{r_{ls}}, \mathrm{\alpha_{ls}}, \frac{\pi}{2})$

Amplitude Decay

Summary and Discussion

- sound field with a mild amplitude decay
- ullet compensation of the low-pass characteristic ($F_{ t EQ}(\omega)=\sqrt{irac{\omega}{c}})$
- efficient realization of driving function required

THANK YOU!

http://spatialaudio.net

A1. Converting $\mathring{S}_m(\omega)$ to $\breve{S}_n^m(\omega)$

$$i^{-m}J_m(z) = \sum_{n=|m|}^{\infty} 4\pi i^{-n} j_n(z) Y_n^m(\frac{\pi}{2}, 0)^* Y_n^m(\beta, 0)$$

A2. Green's Function

Spherical harmonics expansion of $G(\mathbf{x} - \mathbf{x}_0, \omega)$

- 3D NFC-HOA: $\mathbf{x}_0 = (r_0, 0, 0)$
- 2.5D NFC-HOA: $\mathbf{x}_0 = (r_0, 0, \frac{\pi}{2})$

Free-field Green's function

$$\breve{G}_n^m(\omega) = -i\frac{\omega}{c}h_n^{(2)}(\frac{\omega}{c}r_0)Y_n^m(\beta_0,\alpha_0)^*$$