Paper: Array Design for Increased Spatial Aliasing Frequency in Wave Field Synthesis Based on a Geometric Model

At the 45th German Annual Conference on Acoustics (DAGA) we presented the contribution:

Winter, F.; Schultz, F.; Spors, S. (2019): “Array Design for Increased Spatial Aliasing Frequency in Wave Field Synthesis Based on a Geometric Model.” In: German Annual Conference on Acoustics (DAGA). Rostock. p. 463-446.

The poster and additional material can be found here.

Abstract:
Wave Field Synthesis aims at a physically accurate synthesis of a desired sound field inside a target region. Typically, the region is surrounded by a finite number of discrete loudspeakers. For practical loudspeaker setups, this spatial sampling causes spatial aliasing artefacts and does not allow for an accurate synthesis over the entire audible frequency range. Recently, the authors proposed a geometric model to predict the so-called aliasing frequency up to which the spatial aliasing is negligible for a specific listening position or area. Besides its dependency on the desired sound field, this frequency is influenced by the spacing between individual loudspeakers. This work discusses the effects of non-uniform spacing on the aliasing frequency. We further propose optimal discretisation patterns for a given array geometry and desired sound field. The derived patterns are compared to a uniform sampling scheme via numerical simulations of the synthesised sound fields. The results show an increase of the aliasing frequency for the optimised patterns.

This entry was posted in Papers, Publications and tagged , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.