Article: Improved Referencing Schemes for 2.5D Wave Field Synthesis Driving Functions

Our recent contribution to 2.5D WFS theory is published:
Gergely Firtha, Peter Fiala, Frank Schultz, Sascha Spors (2017): “Improved Referencing Schemes for 2.5D Wave Field Synthesis Driving Functions.” In: IEEE/ACM Trans. Audio, Speech, Language Process. 25(5):1117-1127. 10.1109/TASLP.2017.2689245.

Abstract:
Wave Field Synthesis allows the reconstruction of an arbitrary target sound field within a listening area by using a secondary source contour of spherical monopoles. While phase correct synthesis is ensured over the whole listening area, amplitude deviations are present besides a predefined reference curve. So far, the existence and potential shapes of this reference curve was not extensively discussed in the Wave Field Synthesis literature. This article introduces improved driving functions for 2.5D Wave Field Synthesis. The novel driving functions allow for the control of the locations of amplitude correct synthesis for arbitrarily shaped—possibly curved—secondary source distributions. This is achieved by deriving an expressive physical interpretation of the stationary phase approximation leading to the presented unified Wave Field Synthesis framework. The improved solutions are better suited for practical applications. Additionally, a consistent classification of existing implicit and explicit 2.5D sound field synthesis solutions as special cases of the unified framework is given.

This entry was posted in Papers and tagged , , . Bookmark the permalink.

One Response to Article: Improved Referencing Schemes for 2.5D Wave Field Synthesis Driving Functions

  1. Pingback: Paper: Wave Field Synthesis Driving Functions for Large-Scale Sound Reinforcement Using Line Source Arrays | spatialaudio.net

Leave a Reply

Your email address will not be published. Required fields are marked *